Смекни!
smekni.com

Використання технології цифрового діаграмоутворення в системах мобільного зв'язку (стр. 2 из 5)

ДС антени, отримана в площині з після нахилу антени, показана на рис. 1.3 [1]. Коли центральний промінь нахилений униз на кут θ, то нецентральний промінь нахилений униз на менший кут, тому найбільше ослаблення виходить для θ=0. ДС антени обслуговуючі стільники повинна бути повернена по годинній стрілці на 100, щоб виріз був спрямований прямо на одноканальний сектор стільники. Кут нахилу антени θ може бути обраний у діапазоні від 22 до 240, щоб збільшити відношення сигнал/інтерференція додатково на 7-8 дБ в одноканальній стільниці. Але в 190-секторі обслуговуючі стільники рівень сигналу також послабляється. Використання достатньої потужності передачі може виправити дану ситуацію.


Рис. 1.3. Виріз на горизонтальної ДС при нахилу антени вниз на кут θ.

Міжканальна завада містить у собі інтерференцію наступного каналу (каналу, що випливає за каналом обслуговування) й інтерференцію сусіднього каналу (що перебуває на відстані більш ніж одного каналу від каналу обслуговування). Міжканальна завада може бути усунута на основі призначення каналів, вибору характеристик фільтрів, і зменшення завади типу ближній/дальній прийом.

Інтерференція наступного каналу, що впливає на мобільний блок, не може бути викликана передавачами на БС стільники, але може з'являтися в БС інших стільник. Крім того, мобільний блок, починаючи виклик по каналу керування в стільниці, може викликати інтерференцію з наступним каналом керування на БС інший стільники. Методи для зменшення інтерференції наступного каналу використаються на приймальному кінці. Характеристики фільтра каналу: нахил у мовному діапазоні 6 дБ/окт, а поза мовним діапазоном – 24 дБ/окт. Якщо сигнал інтерференції наступного каналу сильніше 24 дБ, він буде інтерферувати з бажаним сигналом. Фільтр із крутою характеристикою може допомогти зменшити всі типи інтерференції суміжного каналу, включаючи й інтерференцію наступного каналу.

Канали, які віддалені на кілька каналів від каналу, що обслуговує, можуть викликати інтерференцію з бажаним сигналом. Міжканальна завада послабляється шляхом правильного призначення каналів. Кожній БС стільники привласнюється фіксований набір обслуговуючих каналів. Якщо всі канали одночасно передаються з однієї антени БС, то для багатоканального комбайнера потрібна достатня ізоляція між діапазонами каналів для придушення продуктів інтермодуляції. Вимоги по розподілу діапазонів можуть бути виконані, наприклад, шляхом використання кількох антен замість однієї на БС.

Через постійне пересування транспортних засобів деякі мобільні блоки перебувають поблизу БС стільники, а деяківіддалені. Близько розташований мобільний блок випромінює сильний сигнал, що викликає інтерференцію суміжного каналу (рис. 1.4 а). У даній ситуації інтерференція може з'явитися тільки на приймальному кінці на БС стільники. Всі частотні канали розподіляються по K стільниках, кожна стільника має тільки 1/K від всіх частотних каналів. Питання полягає в розробці схеми частотного менеджменту для коректного присвоєння K наборів частотних каналів, що вирішує проблему, описану вище.

Інтерференція суміжного каналу може виникнути між 2 різними СМЗ. У цій ситуації інтерференція суміжного каналу може виникнути як у мобільному блоці, так й на БС.


а)б)

Рис. 1.4. Інтерференція типу ближній/дальній прийом.

Наприклад, мобільний блок А може бути розташований на границі його власної стільники А в системі А, але дуже близько до стільники Б системи В, як показано на рис. 1.4 б. Інша ситуація може виникнути, якщо мобільний блок У буде на границі стільники Б системи В дуже близько до стільники А системи А. Суцільна стрілка показує, що інтерференція може виникнути на БС стільники А, а пунктирна стрілка показує, що інтерференція може виникнути в мобільному блоці А. Звичайно, аналогічна інтерференція буде на БС стільники Б и в мобільному блоці В.

Таким чином, частотні канали обох стільник 2 систем повинні бути скоординовані за частотним діапазоном.

де γ - кут нахилу кривої втрат поширення. При d0=10 км, d1=0,5 км, γ=4 одержимо C/I=-64 дБ. Цей вид інтерференції може бути зменшений тільки частотним розподілом за допомогою вузькосмугового фільтра. Допустимо, що фільтр каналу Б має нахил L=24 дБ/окт. Розподіл частотного діапазону для ослаблення завади на 64+18 дБ буде

де B - ширина частотного діапазону одного каналу.

Загальну формулу обчислення частотного поділу ΔF для запобігання даного типу завади можна записати у вигляді:

,

де (C/I)0 - відношення сигнал/завада для впевненого прийому.

Можливий ще один небажаний ефект через велику різницю рівнів прийнятих БС сигналів. Типові попередні підсилювачі мають діапазон лінійності близько 70 дБ, причому нижня границя лінійного діапазону розраховується так, щоб забезпечити посилення сигналу, що приходить із границі стільники. Тому сигнал від АС, що перебуває на відстані менше d, при якому

викличе перевантаження підсилювача й поява нелінійних перекручувань. Продукти інтермодуляції можуть потрапити на інший канал. Отже, ближній мобільний блок може на базовій станції викликати інтерференцію з далеким мобільним блоком шляхом інтермодуляції в підсилювачі на базовій станції й просочування в сигнал від далекого мобільного блоку, прийнятий на цій же БС.

Зменшення рівня потужності, якщо це можливо, завжди є кращою стратегією. Переваги від керування рівнем потужності наступні:

1. Керування мобільним рівнем переданої потужності. Коли мобільний блок наближається до базової станції, рівень потужності мобільного блоку повинен бути зменшений з наступних міркувань:

а) зменшення ймовірності генерації продуктів інтермодуляції в приймальному підсилювачі через насичення;

б) зменшення рівня завади іншим одноканальним БС стільник;

в) зменшення інтерференції типу ближній/дальнійприйом.

2. Керування рівнем переданої потужності БС. Коли прийнятий від мобільного блоку сигнал дуже сильний, необхідно зменшити рівень переданої потужності цього каналу на БС, й в той же час понизити рівень переданої потужності від мобільного блоку. Переваги в наступному:

а) для конкретного радіоканалу значно зменшується розмір стільники й одноканальна інтерференція;

б) інтерференція суміжного каналу в системі також зменшується;

Однак у більшості стільникових систем на БС неможливо зменшити потужність тільки одного або декількох каналів через проектні обмеження комбайнера. Ізоляція каналів у комбайнері складає 18 дБ. Якщо рівень переданої потужності одного каналу нижче, то канали, що мають високі рівні переданої потужності будуть інтерферувати з цим каналом. Необхідно мати комбайнер для каналів з різною потужністю, щоб рівень потужності кожного каналу міг установлюватисяз базової станції.

Таким, чином, придушення внутрішньо-системних завад у СМЗ завжди є досить вагомою проблемою. При наявності двохрізнихСМЗ частотні канали обох стільник 2 систем повинні бути скоординовані по частотних діапазонах. Для придушення внутрішньо-канальної завади пропонується використання спрямованих антен на БС і нахил ДС антенної системи. Зазначені підходи можливо реалізувати при використанні перспективних технологій, які будуть розглянуті нижче.

2.Переваги технології цифрового діаграмоутворення (ЦДУ) в зв’язку

Останнім часом все більшого поширення набуває технологія цифрового діаграмоутворення (ЦДУ). Ним все більш приділяється значиме місце в сучасних системах зв’язку, ними займаються практично у всіх технічно розвитих країнах світу. Без них не обходяться концепції мобільного зв’язку 3-го і 4-го поколінь. Як відомо, ЦДУ реалізується за допомогою цифрових антенних решіток (ЦАР) [3, 4], за кордоном також іменованих Smart-антенами (розумними антенами). Використовують і синонім - Intelligent Antenna. Можливо, ці поняття, що віддають рекламою й орієнтовані на рядового споживача, не самі вдалі. Однак вони як не можна краще відбивають суть можливостей, наданих технологією цифрового діаграмоутворення (ЦДУ), завдяки яким антенні системи стають усе більш “інтелектуальними”.

Які ж переваги нового класу антенних систем перед традиційними антенами, у тому числі перед їхнім прототипом - фазованими антенними решітками (ФАР)? Для відповіді на це питання необхідно розглянути схемотехніку ЦАР [5-8].

Цифрова антенна решітка - це антенна система, що представляє собою сукупність аналого-цифрових каналів із загальним фазовим центром, у якій діаграма спрямованості формуються в цифровому виді, без фазообертачів. Теоретичні основи такого підходу до побудови антен були закладені ще в 60-70-і роки минулого століття. Але лише тепер, з розвитком мікропроцесорної техніки, стало можливим практично реалізувати накопичений науковий досвід. У колишньому СРСР протягом 60-90-х років XX сторіччя вже існували спроби розробки теоретичних основ аналізу з надрозрізненням сигналів, а також проводились випробування низки макетів і опитних зразків радіотехнічних систем з ЦАР.

Сучасні технології ЦАР своїм масовим розвитком зобов’язані інтеграції процесорів цифрової обробки сигналів з аналого-цифровими і цифро-аналоговими перетворювачами (АЦП/ЦАП) у рамках одного модуля або навіть чіпа [4, 5]. Побудова каналів ЦАР на такій основі дозволяє уніфікувати процедури й апаратні вузли обробки сигналів і спрощує їхню адаптацію до того чи іншого протоколу роботи. Технологія ЦДУ забезпечує максимальну простоту реконфігурації і модифікації систем зв’язку, що найчастіше зводиться лише до заміни їхнього програмного забезпечення. При цьому архітектура радіоелектронної апаратури може оптимізуватися (за ресурсами і функціональністю) безпосередньо під виконувані задачі. У цьому змісті технологію ЦАР можна вважати вінцем розвитку настільки популярної сьогодні концепції програмної реконфігурації архітектури (Software Defined Radio).