Шуми та чутливість приймальних пристроїв
Якість цифрового приймача оцінюється відношенням напруги сигналу, що є випадковою величиною з гауссовським законом розподілення, до стандартного відхилення, це відношення є аргументом функції помилок. Воно визначає при заданій швидкості передачі коефіцієнт помилок, що спостерігається на виході приймача у функції від оптичної потужності, що приймається. Таке визначення критерію якості приймача має перевагу в тому, що дозволяє безпосередньо оцінювати систему, але його недолік в тому, що він залежить від коду передачі. Тому при аналізі шумових властивостей цифрового оптичного приймального пристрою для виключення залежності від коду передачі робиться припущення, що одиниці кодуються імпульсами певної амплітуди, а нулі - паузою, тобто кодами без повертання до нуля. Крім того, припускається, що абсолютно точно проводиться синхронне детектування – тобто рішення приймається за половинним рівнем сигналу та всередині тактового інтервалу. Таке припущення дозволяє обмежитись дослідженням лише еквівалентної шумової схеми вхідних каскадів приймача, в якому виконується аналогова обробка сигналів (рис. 1).
Рис. 1 - Групи джерел шуму
Струм на виході ФД є пропорційним оптичній потужності, що приймається, та може бути наведений виразом
У загальному випадку оптична потужність є сумою двох складових
Р= Р~+Рф,(2)
де Р~ – змінна оптична потужність сигналу, Рф – оптична потужність фону. У ВОСП потужність фону виникає внаслідок наявності струму постійного зміщення випромінювача. Оскільки обидві складові оптичної потужності діють на світлочутливу поверхню ФД, фотострум, що виникає цього разу, протікає через опір навантаження, в подальшому буде використовуватись сумарна потужність (2).
Темновий струм io звичайно дуже малий (io<<1 мкА для кремнієвих ФД) , крім того, він не передається приймальними пристроями, в яких використовується фільтр низьких частот. Отже, темновий струм майже не впливає на характеристики приймальних пристроїв.
Розглянемо тепер джерела шумів у оптичних приймальних пристроях. Усі шуми, незалежно від їх походження, характеризуються спектральною щільністю потужності, А2/Гц.
Дробовий шум. Цей шум зумовлений випадковим пуасонівським розподіленням фотонів у оптичній хвилі, що приймається. У разі використання лавинного фотодіода цей шум підсилюється, процес підсилення є також випадковим. Спектральна щільність цього шуму в подвоєній смузі частот приблизно може бути представлена виразом
де М – коефіцієнт множення лавинного ФД, Р – оптична потужність, що приймається ФД, F(М) – коефіцієнт шуму фотодіода, який залежить від типу фотодіода, звичайно використовується приблизний вираз для F(M), q – заряд електрона.
F(M)=M X,(4)
де х – постійна шуму, що приблизно дорівнює 0,5 для кремнієвих та 1 для германієвих фотодіодів. Таким чином, враховуючи (3), маємо
Слід нагадати, що
де Si – інтегральна струмова чутливість фотодетектора, і – фотострум.
Вирази (3) та (5) виявляють суттєву відзнаку приймальних пристроїв волоконно-оптичних систем передачі від класичних приймачів радіодіапазону. В оптичних приймачах шум залежить від оптичної потужності сигналу, що приймається. В цьому випадку не можна користуватися уявленнями теорії оптимального прийому, в якій вважається, що шум в приймачі є постійним та незалежним від потужності сигналу.
Для спрощення розрахунків при оцінці Nig, береться середнє значення фотоструму i. Крім того, якщо зневажити темновим струмом ФД у порівнянні із струмом сигналу, то можна не враховувати й дробовий шум, що викликаний темновим струмом. Спектральна щільність дробового шуму пов’язана із середнім квадратом струму дробового шуму співвідношенням
де DF – смуга пропускання приймача.
Тепловий шум. Цей шум зумовлений резисторами RH, RA, R0. Спектральна щільність теплового шуму має вираз
де k – постійна Больцмана (1.38.10-23 Дж/К), а Т – абсолютна температура,
Аналогічно (9) маємо
На практиці майже завжди напруга на виході приймача та вхідний струм пов’язані співвідношенням,якщо коефіцієнт підсилення значно перевищує 1
Звичайно опір резистора R0 вибирається, виходячи з вимоги забезпечення смуги пропускання підсилювача DF
В цьому разі (9) матиме вигляд u=R0i.
Середньоквадратичне відхилення випадкової величини u є потужністю шуму. Для частини загального шуму вхідного каскаду, що вноситься шумовими струмами, маємо
Для оцінки частини від загального шуму, що вноситься шумовим генератором напруги у колі зворотного зв’язку (рис. 2), потрібно розрахувати співвідношення між ea та вихідною напругою u при нульовому струмі сигналу
де
Враховуючи вимогу (10), (11) матиме вигляд
Знайдемо вираз для дисперсії напруги шуму (або ж потужності шуму)
На практиці виконується співвідношення
На основі припущення про статистичну незалежність джерел шуму, враховуючи (11), маємо вираз для повної дисперсії шуму
Зважаючи на те, що дисперсія випадкової величини u на виході приймача є потужністю шуму, відношення сигнал/шум з урахуванням (14) матиме вигляд
Отже, для оптимізації відношення сигнал/шум потрібно, щоб джерела шумів були слабкими, вхідний струм досить великим (це тривіальні вимоги), а повні опори навантаження та кола зворотного зв’язку – великими (Сс та С0 – малі, Rc та R0 – великі).
Спектральні щільності шумової напруги Nea та шумового струму Nia вхідного каскаду підсилювача залежать від виду транзистора, що використовується у вихідному каскаді (біполярний або польовий), це питання буде розглянуто надалі.
При проектуванні системи важливо знати мінімальну оптичну потужність на вході фотодетектора, що забезпечує потрібне відношення сигнал/шум (у разі аналогової системи). Введемо середнє у часі значення сигнального струму I та коефіцієнт модуляції m, тоді представимо вираз (16) у вигляді
З (17) випливає, що відношення сигналу до шуму зростає із зростанням коефіцієнта модуляції. Вираз (3.26) дозволяє визначити порогову чутливість приймача (при