Устройства для гамма-интроскопии
1. Физические основы и средства радионуклидной интроскопии
1.1 Радионуклиды и радиоактивные фармакологические препараты
Задачей радионуклидной диагностики является исследование человеческого организма с помощью радиоактивных изотопов, или радионуклидов (РН). Они входят в состав специальных веществ – радиоактивных фармакологических препаратов (РФП), которые вводятся в организм через кровеносные сосуды (вены), дыхательные пути или пищеварительный тракт. РФП вместе с кровью, воздухом или пищей разносятся по организму и накапливаются в определенных местах. С помощью приборов определяют их место накопления и интенсивность излучения.
РН в медицинской радиологии используются для диагностики и терапии, причем, в первом случае применяют РН, дающие только g-излучение, а во втором также и b- или a-излучение, которые имеют большую энергию и меньшую проникающую способность, чем g-излучение.
Наиболее важными для диагностики параметрами РН являются энергия g-кванта, активность РН и период полураспада. Энергия g-кванта РН для диагностики обычно лежит в пределах 100 – 360 кэВ. Активность РН измеряется в беккерелях (1Бк равен одному распаду в секунду) и у диагностических РН имеет величину от единиц до нескольких десятков МБк. Разумеется, активность зависит от общего количества РФП. Для диагностики используют РФП в небольших количествах, содержащие короткоживущие изотопы с периодом полураспада несколько суток, часов и даже минут. Это позволяет проводить исследования с малыми дозами облучения. Кроме того, применяют такие РФП, которые быстро выводятся из организма естественным путем.
Результирующая скорость убывания активности зависит от скорости выведения РФП из организма и характеризуется эффективным периодом полувыведения
,где Т – период полураспада радионуклида, Тб – период полувыведения РФП биологическим путем.
Важным свойством РФП является тропность – способность проникать именно в те органы, которые собираются исследовать. К РФП предъявляют также требования по чистоте – химической, радиохимической и радионуклидной. Химическая чистота РФП определяется наличием в нем посторонних нерадиоактивных веществ. Особое внимание при этом уделяют примесям тяжелых металлов. Радиохимическая чистота определяется долей РН, находящегося в РФП в необходимой химической форме. Радиохимическая чистота – это доля общей активности препарата, обусловленная необходимым РН.
Наиболее широко в радионуклидной диагностике используются технеций 99mTc, индий 113mIn и йод 131I. Два первых радионуклида дают только g-излучение. Главной областью их применения является визуализация g-изображений. Индекс "m" означает "метастабильный". От обычных изотопов метастабильные отличаются более высокой внутриядерной энергией, которую они теряют вместе с
g-квантом. Изотоп 131I кроме g-излучения дает еще и b-излучение и поэтому используется также и в лучевой терапии.
Источниками получения искусственных радионуклидов служат реакторы, циклотроны и специальные портативные генераторы. Последние являются основными источниками, поставляющими 99mTc и 113mIn. Короткоживущие нуклиды получают из первичных относительно долгоживущих изотопов, которые называют материнскими, а получаемые изотопы называют дочерними. В табл.1 приведены параметры 99mTc и 113mIn и их материнских РН.
Таблица 1 Параметры короткоживущих РН
Дочерний РН | Период полураспада | Энергия, кэВ | Материнский РН | Период полураспада |
99mTc | 6 ч | 140 | 99Мо | 67 ч |
113mIn | 100 мин | 393 | 113Sn | 118 сут |
Как видно из табл.1, дочерние изотопы весьма короткоживущие, и готовить их нужно непосредственно перед исследованием.
Раствор NH4MoO4 играет роль элюента 1. Он поступает в разделительную колонку 2, через которую пропускается хлорид натрия. В результате образуется элюат 3, который проходит через фильтр 4 и поступает в герметичный сосуд емкостью около 10 мл. В колонке происходит распад материнского РН. Изотоп 99Мо захватывает электрон и перемещается из шестой группы таблицы Менделеева в седьмую, становясь технецием 99mТс. При этом он входит в соединение Na(99mТсО4) – пертехнетат. Колонка находится в защитном корпусе из свинца 5, вся установка также закрыта защитным кожухом.
Материнские РН поставляют из реакторов в жидкой или газообразной форме, например, молибден 99Мо – в виде раствора NH4MoO4. Схема генератора для получения 99mТс из 99Мо показана на рис 1. Он основан на хроматографическом методе разделения веществ.
Технеций 99mТс применяется в 90% всех диагностических процедур в ядерной медицине. Это объясняется его короткоживучестью, малой энергией g-кванта и относительной простотой получения. С помощью 99mТс проводят распознавание опухолей мозга, исследование центральной и периферической гемодинамики, исследование щитовидной железы, костной системы. В 1990 г. было произведено 300000 генераторов технеция. Стоимость таких генераторов достаточно высока (около 300 долл.). Однако основной проблемой здесь является поставка исходного сырья – молибдена.
Кроме технеция 99mТс и индия 113mIn в ядерной медицине широко применяют и много других изотопов:
йод 131I, 132I – для исследования йодного обмена, функции печени и почек;
хром 51Cr – в гематологии;
24Na, 42Ka, 86Rb, 82Br – изучение водно-солевого обмена;
198Au, 111In – легкие, печень, головной мозг;
газообразные нуклиды 133Xe, 75Kr – легкие, центральная и периферическая гемодинамика;
75Se, 32P – исследования в онкологии.
Широко применяются также короткоживущие и ультракороткоживущие изотопы с позитронным распадом. Речь о них пойдет ниже.
1.2 Параметры и технология сцинтилляторов
Качество работы гамма-камеры зависит прежде всего от детекторной системы и ее "сердца" - сцинтиллятора. Поэтому он заслуживает отдельного рассмотрения. Как уже отмечалось выше, в качестве сцинтилляторов детекторных систем применяют NaI(Tl). Однако в некоторых случаях применяют и другие соединения, например, CsI(Na), CsI(Tl) – для счета a-частиц, LiF(W) и LiI(Eu) –для счета нейтронов. Параметры некоторых сцинтилляторов в сравнении с NaI(Tl) приведены в табл.3.
Таблица 3 Параметры сцинтилляторов.
Тип сцинтиллятора | NaI(Tl) | CsI(Na) | CsI(неактиви-рованный) | LiF(W) |
Плотность, г/см3 | 3,67 | 4,51 | 4,51 | 2,64 |
Температура плавления, К | 924 | 894 | 894 | 1133 |
Коэффициент преломления | 1,85 | 1,84 | 1,95 | 1,4 |
Гигроскопичность | да | да | слабая | нет |
Длина волны излучения, нм | 415 | 420 | 310 | 430 |
Световой выход, в % к NaI(Tl) | 100 | 85 | 5 – 6 | 3 – 5 |
Время основного свечения, мкс | 0,23 | 0,63 | 0,01 | 40 |
Как видно из таблицы, самый большой световой выход имеет кристалл NaI(Tl). Однако он очень гигроскопичен и требует надежной герметизации. Кристаллы CsI и LiF(W) имеют малый световой выход, но в обоих случаях сцинтилляции вызываются a-частицами, энергия которых велика ( во втором случае при поглощении нейтрона литий распадается с выделением a-частицы). Все кристаллы существенно тяжелее стекла, а коэффициент преломления у них почти такой же.
Большинство кристаллов излучают синий свет, и только CsI дает УФ излучение. Сцинтилляция характеризуется временем основного свечения и послесвечения, которое составляет несколько процентов от основного. Этот параметр определяет максимально возможную скорость счета. Например, для кристалла NaI(Tl) она составляет около 4×106 имп/с, что намного больше встречающейся на практике максимальной скорости счета.
Технология изготовления сцинтилляционных кристаллов весьма сложна, и поэтому стоят они дорого. Производство сцинтилляторов и детекторов для РН диагностики, и в частности, для гамма-камер – чрезвычайно наукоемкая отрасль. Выпуском таких детекторов уже давно занимается научно-производственное объединение НИИ монокристаллов (г. Харьков). Его продукция успешно конкурирует на мировом рынке и экспортируется во многие страны, в том числе, США, Японию и др.
Рассмотрим кратко технологию производства самых распространенных кристаллов NaI(Tl). Кристалл NaI(Tl) выращивают в специальной вакуумной печи (камере). Ее конструкция показана на рис.2.
Рисунок 2. Камера для выращивания кристаллов NaI(Tl).
Кристалл 1 вытягивают из расплава смеси 99% NaI и 1% Tl. Исходное сырье плавится в платиновом тигле 2. Применение такого дорогого материала объясняется чрезвычайной агрессивностью расплава NaI, которой не выдерживает никакой другой материал. Температура плавления 924 К, или 650о С, указанная в табл.1, относится, вообще говоря, к NaI. Температура плавления таллия меньше. В процессе плавки он испаряется и его приходится постоянно добавлять.
Нагрев печи обеспечивается двумя нагревателями – боковыми 3 и нижним 4, вмонтированными в футеровку печи. Сырье поступает через питатель 5 в периферийную часть тигля, которая отделена от центральной части ситом 6, отсеивающим посторонние включения.
Для формирования кристалла используют затравку 7 – твердый кристалл NaI(Tl), прикрепляемый к держателю 8. Затравку приводят в соприкосновение с расплавом сырья в момент термодинамического равновесия (когда жидкая фаза не кристаллизуется, а твердая – не плавится). Кристаллодержатель и тигель вращаются в одну или в разные стороны для усреднения температурных полей. При этом кристалл медленно вытягивается из расплава.