Смекни!
smekni.com

Физический анализ магнитно-резонансных томографов (стр. 2 из 2)

или
.

Это уравнение незатухающих колебаний, решение которого с учетом начальных условий можно записать в виде

.

Полное решение системы (5) будет иметь вид

,

, (6)

.

При учете в уравнении Блоха членов, содержащих Т1 и Т2 первое и второе уравнения системы (6) следует умножить на exp(-t/T2), а третье уравнение примет вид


.

Из этой формулы видно, что продольная намагниченность является апериодической неосциллирующей функцией.

Поперечную намагниченность можно представить в компактной комплексной форме

или
, (7)

где

,
.

Чтобы понять, как осуществляется управление прецессией, кратко рассмотрим устройство и действие магнитной системы МР-томографа (более подробно речь о ней пойдет впереди). Она представляет собой сложную конструкцию и состоит из главного магнита, градиентных, корректирующих и радиочастотных катушек. Главный магнит служит для создания сильного и однородного магнитного поля. Он может быть выполнен в виде соленоида с током (резистивный магнит). При больших индукциях (свыше 0,5 Тл) потери в таком магните становятся чрезмерно большими. В этом случае применяют сверхпроводящие (криогенные) магниты, охлаждаемые жидким гелием. Их стоимость очень велика, но зато диагностические возможности МР-томографов с такими магнитами намного выше. Применяют также постоянные магниты со слабым полем (0,1- 0,15 Тл).

Корректирующие катушки создают слабые постоянные магнитные поля, предназначенные для компенсации неоднородностей поля главного магнита, которая должна быть не более 10-6 .

Градиентные катушки осуществляют управление процессом выбора и сканирования сечения. При изменении тока в этих катушках очень незначительно меняется основное поле и соответственно изменяется ларморова частота в отдельных точках пространства. Градиентных катушек три: соответственно для создания градиентных полей по осям x, y и z. Особенностью градиентных полей является то, что векторы их напряженностей в любой точке направлены параллельно оси z, т.е. вдоль оси главного магнита, а их абсолютные значения линейно зависят от соответствующей координаты (рис.4).

Рисунок 4. Поля градиентов.

При действии градиентных полей результирующее поле будет равно

или
,

где r- обобщенная координата точки. Градиенту G(r) соответствует ларморова частота

w(r) = g(H0+Gr), а величина M(t,r) будет определяться выражением, аналогичным (7):

. (8)

Если формировать статический градиент G во время наблюдения сигнала, частота колебаний намагниченности начинает зависеть от r. Эта пространственная зависимость сказывается на характере выходного сигнала. Если сформировать градиентный импульс малой длительности t (t << T1, T2), то в выражении (8) можно пренебречь величиной t/T2(r):


. (9)

Величину

в (9) можно рассматривать как изменение фазы колебания с частотой w0. Рассмотрим теперь действие ВЧ магнитного поля H1(t) при наличии поля главного магнита. Как было сказано ранее, это поле возбуждается РЧ катушками в поперечном направлении. Будем считать, что оно направлено вдоль оси х и запишем его в виде
. Такое поле называют линейно поляризованным. Его можно записать в тождественной форме

+
.

Это выражение представляет собой сумму полей с круговой поляризацией с разным направлением вращения. Причем, при выборе g со знаком "минус" в уравнении Лармора (w = -gН), вторая составляющая практически не влияет на прецессию ядер и ею можно пренебречь. Таким образом,

.

Это поле называется эффективным.

Пусть время действия РЧ импульса намного меньше самой малой постоянной релаксации (минимальное время Т2 тканей составляет 40 мс). Тогда уравнение Блоха будет иметь вид

,

где

+
, H = H0 + h, h = Gr – вклад градиентной системы. С учетом правила перемножения векторов найдем

-
,

, (10)

.

Для упрощения решения этой системы введем вращающуюся систему координат i¢, j¢ и k¢= k, которая вращается с частотой прецессии, т.е. синхронно с вектором намагниченности. При этом одна из проекций может быть равной нулю или оказаться постоянной величиной. Преобразование проекций поясняется с помощью рис.5.

Рисунок 5. Преобразование координат

С помощью зависимостей (11), используя уравнения системы (10), можно получить уравнения для вращающейся системы координат

, (12)

.

Положим в системе (12) w = w0. Учитывая w0 = – gН0, имеем gН + w0 = g(Н0 +h) – gH0 = gh. Здесь проявляется необходимость введения знака " минус" в уравнении Лармора. Иначе бы gН + w0 » 2w0. Рассмотрим частный случай статического поля (h =0) и воздействия ВЧ поля H1(t). В этом случае система (12) примет вид

,
. (13)

Величина

имеет размерность угловой частоты. Обозначим
. Тогда решениями уравнений (13) будут

(14)

Из соотношений (14) видно, что вектор намагниченности вращается вокруг оси i’ c угловой скоростью

. Это вращение относительно медленное и называется нутацией. Угол нутации равен
или
, t - время действия РЧ импульса H1(t). (15)

Таким образом, угол нутации зависит от величины и времени воздействия РЧ импульса. Траектория вектора намагниченности при этом подобна раскрывающемуся вееру (рис.6).


Рисунок 6. Нутация вектора намагниченности.

Наиболее часто применяют РЧ импульсы, которые приводят к повороту вектора намагниченности на 90о и на 180о (90о - и 180о - импульсы).