Получим
Типовые размеры основных элементов ФЯ: ширина внешних рёбер жесткости 3мм, продольных внешних и внутренних – 5мм, ширина окна для навесных элементов 10мм, ширина окна для пайки выводов МСБ – 5мм, ширина зоны внешних соединений – 5мм.
Определим размеры ФЯ:
Ширина ФЯ
Сборочный чертёж в приложении Р-402.468759.008 СБ.
Считаем массу:
где
- объем ФЯ, - плотность материала ФЯ для алюминиевого сплава В95 (Л1, табл П 9.2). За счёт наличия окон и пустот, расчёт объёма ФЯ будет приблизительным.Рассчитаем объём ФЯ путём складывания объёмов отдельных деталей конструкции ФЯ:
Общий вес ФЯ
2.3 Оценка вибропрочности ФЯ
Для оценки вибропрочности ФЯ выберем наихудшие условия транспортировки или эксплуатации. Проектируемое устройство может использоваться как в переносных так и стационарных системах, транспортировка осуществляется авиатранспортом.
Авиатранспорт имеет значения перегрузки в диапазоне 0.1…20 и частоту вибрации 5…2000Гц. Вес ячейки 0.4022Н.
Рамка ФЯ выполнена из алюминиевого сплава В95 с константами упругости
, коэффициент Пуассона , толщина планок рамки 0.8мм.Печатная плата крепится к рамке с помощью антивибрационного компаунда КТ-102 по всей поверхности прилегания. Материал платы – стеклотекстолит СФ-2Н-50-0,8, толщиной, соответственно, 0.8мм и
, .Влияние подложек на жесткость ФЯ несущественно, ими пренебрегаем.
Произведем оценку наиболее опасной при воздействии вибрации частоты механического резонанса ФЯ, путём выбора сечений с заведомо малым моментом инерции сечения.
Рассчитаем вибропрочность для поперечного сечения А-А, состоящего из элементарных прямоугольных фигур.
Зная цилиндрическую жесткость ФЯ:
, определим жесткость печатной платы:Для оценки жесткости рамки
вычислим момент инерции сечения А-А. Для этого найдём моменты инерций сечений фрагментов:Для определения момента инерции сечения А-А необходимо предварительно определить координату
центра тяжести сечения А-А и расстояния между центром тяжести сечения А-А и центрами тяжести фрагментов 1, 2, 3.Учитываем что фрагменты встречаются несколько раз.
Момент инерции сечения А-А:
Цилиндрическая жесткость рамки ФЯ
,где
- определяющий линейный размер, длина сечения.Получаем жесткость на изгиб
.Для определения
найдем массу единицы площади ФЯКоэффициент закрепления ФЯ при
Частота механического резонанса
ФЯ будет равнаПроверим вибропрочность, принимаем коэффициент динамичности ФЯ
, тогда из графика на рис.8 для найдем допускаемую перегрузку ФЯ.Допустимая перегрузка ФЯ
›100, что выше значения заданного в ТЗ равное 20.Теперь проведём расчёт вибропрочности для сечения B-B. Представим сечение В-В состоящим из двух прямоугольных фигур.
Проведём расчёт вибропрочности сечения В-В аналогично сечению А-А
Найдём моменты инерций сечений фрагментов:
Центр тяжести фрагмента сечения В-В
Момент инерции сечения В-В:
Цилиндрическая жесткость рамки ФЯ
,где
- определяющий размер, длина сечения..Получаем жесткость на изгиб
.Для определения
найдем массу единицы площади ФЯКоэффициент закрепления ФЯ при
Частота механического резонанса
ФЯ будет равнаПроверим вибропрочность, принимаем коэффициент динамичности ФЯ
, тогда из графика на рис.8 для найдем допускаемую перегрузку ФЯ, ›100, что выше значения заданного в ТЗ равное 20.3. Оценка теплового режима
3.1 Выбор компоновочной и тепловой схемы ФЯ
Корпус рамки ФЯ выполнен из алюминиевых сплавов, покрытых лаком черным матовым, имеющий степень черноты т
(Л2, П8.2).При оценивании теплового режима конструкции будем считать, что теплообмен между корпусом и внешней средой осуществляется конвекцией, кондукцией (минимальная) и излучением, а передача тепла от МСБ к корпусу осуществляется кондукцией, излучением через «воздушный» зазор и конвекцией. Поверхность корпуса считаем изотермической. Тепловая схема блока представлена на рис. 10.
3.2 Расчёт теплового режима
Плата МСБ имеющая размеры 0,060x0,048x0,0025 м3 припаяна к технологической планке помещённая в корпус с размерами 0,13х0,056x0,006м3.
Рассеиваемая мощность блока равняется
.Температура окружающей среды tср=(-40…+80)°С.
Определяем площадь внешней поверхности корпуса микроблока:
Определяющий размер корпуса:
.Задаемся перегревом корпуса Δt = 10°С относительно температуры среды и определяем среднее значение температуры:
°С