Смекни!
smekni.com

Измеритель напряжённости и градиента магнитного поля (стр. 3 из 7)

N= [MODE] * [1000*Decade 5 Preset + 100*Decade 4 Preset +

10*Decade 3 Preset + 1*Decade 2 Preset] + Decade 1 Preset

Здесь MODE- коэффициент деления первой счетной секции.

Чтобы вычислить значения Preset для каждой декады нужно исходное N разделить на избранный режим.

Пример: N=8479, MODE=5

N/MODE= 8479/5 = 1695 + Остаток (4).

Входы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Значения: 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 0

Проверка:

N= 5(1000*1 + 100*6 + 10*9 + 1*5) + 4 = 8479

Микросхема серии LM324N(КР1401УД2А) представляет собой операционный усилитель, на основе которого можно создать различные по назначению радиотехнические устройства. Операционный усилитель – это усилитель с большим коэффициентом усиления и непосредственными связями, применимый а основном в качестве активного элемента в схемах с обратными связями. При достаточном коэффициенте усиления ОУ по напряжению передаточная характеристика устройства вместе c цепями обратной связи может являться функцией только параметров цепей обратной связи, не зависящих от усиления. Помимо выполнения с помощью ОУ традиционных математических операций, таких как суммирование, вычитание, интегрирование и дифференцирование, на ОУ реализуют различные УПТ, усилители переменного напряжения, логарифмические усилители, видео усилители, усилители ограничители, активные фильтры, модуляторы и демодуляторы, функциональные преобразователи, генераторы гармонических колебаний, стабилизаторы напряжение и тока


Рис. 1.3.2.1 Схема операционного усилителя LM324N(КР1401УД2А)

1.3.3 Описание принципа действия устройства

Прибор состоит из двух идентичных двухкоординатных магнитометров, построенных на основе взаимноортогональных двухосных магниторезистивных преобразователей HMC1022 фирмы Honeywell. Магнитометры расположены на некотором расстоянии друг от друга (измерительная база 1 метр) на концах немагнитной штанги (алюминиевый профиль Г-образного сечения) таким образом, чтобы магниторезистивные преобразователи находились в одной плоскости и их измерительные оси были параллельны и одинаково ориентированы. Поворотом штанги (вручную) можно задавать различную ориентацию плоскости преобразователей относительно поверхности Земли. Магнитометры соединены с блоком питания, управления и вычитателей. Для индикации показаний используется аналоговый вольтметр. Блок питания, управления и вычитателей и вольтметр расположены посередине штанги. Снизу к штанге крепится аккумуляторная батарея. Сверху установлена ручка для переноски.

В качестве датчика магнитного поля использован двухкоординатный магниторезистивный преобразователь на микросхеме TD1 HMC1022 фирмы Honeywell. Для работы этого датчика необходимы сигналы сброса/установки (импульсы тока амплитудой до 0.5 А длительностью около 1 мксек). На вход S/R магнитометра подаются прямоугольные импульсы с блока питания, управления и вычитателей. Микросхема DD3 предназначена для формирования фронтов и спадов импульсов. С выхода микросхемы DD3 прямоугольные импульсы через дифференцирующие цепочки R55C10, R56C9 подаются на транзисторы VT4, VT5. Через конденсаторы C13, C14 импульсы сброса/установки подаются на соответствующие входы микросхемы TD1.

Выходные сигналы (пропорциональные составляющей индукции магнитного поля по соответствующей координате) с датчика TD1 подаются на дифференциальные входы усилителей DA1, DA2 (AMP04 фирмы Analog Devices). Для установки нулевого выходного сигнала в отсутствие магнитного поля используются цепочки R4R5R6, R7R8R9. Коэффициент усиления усилителей DA1, DA2 (соответствующий коэффициентупреобразования 1 В/Гс или 10 мВ/мкТл) задается с помощью резисторов R18 и R21. Через токоограничивающие резисторы R30, R31 сигналы поступают на выход преобразователя (OUTA, OUTB). Для питания магнитометра используются напряжения +12, +5 и +2.5 В (Vref), поступающие от блока питания, управления и вычитателей. Напряжение +12.6 В с аккумуляторной батареи через защитный диод VD2 подается на контакт +12 В (для питания узлов измерителя) и на стабилизатор напряжения +5 В (DA7). Для работы усилителей магнитометра от источника однополярного напряжения служит источник опорного напряжения Vref (+2.5 вольт) на элементах R54 и DA6 (TL431C).

Для формирования сигналов сброса-установки (S/R) служит генератор на микросхемах DD1, DD2. На выходе генератора могут присутствовать четыре разновидности сигнала S/R (режим работы выбирается переключателями S1,S2,S3): прямоугольные импульсы частотой 20 Гц и скважностью, равной 0.5; прямоугольные импульсы частотой 0.2 Гц и скважностью, равной 0.5; прямоугольные импульсы частотой 0.2 Гц и скважностью, равной примерно 0.05; нулевой уровень.

Вход вольтметра подключается к выходам магнитометров, а также к выходам вычитателей.Вольтметр может работать с открытым или закрытым входом, в зависимости от положения переключателя S1. Закрытый вход позволяет отделить переменную составляющую сигнала от постоянной, что в сочетании с разнообразием форм сигнала S/R существенно расширяет возможности устройства. Вольтметр построен по схеме преобразователя напряжение-ток (DA1.2). Для индикации полярности входного напряжения использован узел на микросхеме DA1.3, транзисторах VT1,VT2 и светодиодных индикаторах HL1, HL2.

1.3.4 Расчет потребляемой мощности

Теперь необходимо выполнить расчет потребляемой мощности. Это делается для того, чтобы подобрать правильный блок питания.

Интегральная микросхема DD2 (К561ИЕ16) потребляют мощность

РK561ИЕ16 =0,7*12=8,4 мВт;

Аналоговые микросхемы DA1- DA4 (AMP04) потребляют мощность:

РAMP04= 4*0,5*5=10 мВт;

Аналоговая микросхема DA5 (LM324N) потребляет мощность:

РLM324N =5*3 =15 мВт;

Интегральные микросхемы DD1- DD3 (К561ЛЕ5) потребляют мощность:

РК561ЛЕ5 = 3*0,005*12=0,18 мВт;

Магниторезистивные датчики TD1, TD2 (HMC1022) потребляют мощность:

РHMC1022 = 2*1*12= 24 мВт;

Резисторы потребляют мощность:

Р резисторов =57*0.25= 14.25мВт;

Транзисторы потребляют мощность:

Р транзисторов = 30 +2*12+2*50+2*45 = 222мВт

Резисторы вольтметра потребляют мощность:

Р резисторов В=20*0.25+0.5= 5.5мВт

Транзисторы вольтметра потребляют мощность:

Ртранзисторов В=12+30= 42мВт

Светодиоды вольтметра потребляют мощность:

Р светодиоды В= 3.6+3.6= 7.2 мВт

Стабилитроны вольтметра потребляют мощность:

Р стабилитронов В=300*2= 600мВт

Аналоговая микросхема DA5 в вольтметре (LM324N) потребляет мощность:

РLM324N =5*3 =15 мВт;

Диодный мост вольтметра потребляет мощность:

Р диод.мост В=4мВт

Теперь, рассчитав мощность, потребляемую отдельными элементами устройства, можно рассчитать мощность, потребляемую всем устройством.

Р= ∑Рэл = 15+ 7.2+ 42+ 5.5+222+ 14.25+ 24+ 0.18+ 15+ 10+ 8.4+ 600= 963.53 мВт.

1.4 Разработка блока электропитания

Для работы устройства источник питания должен обеспечивать три напряжения питания: +12В,+5В,+2,5В.

Суммарная мощность проектируемого устройства составила 963.53 мВт.

Исходя из расчётов потребляемой мощности устройства и требуемых номиналов питания, выбираем стабилизатор КР142ЕН5А, со следующими параметрами:

Uвх. мин = 8.5 В;

Uвх. мах = 15 A;

Uвых. мах = 5 В;

Uвых. мах = 6.1 В;

Iвых. мах = 8 A;

P мах = 10Вт;

Мною была выбрана схема электропитания, представленная на рисунке:

Рисунок 1.4.1

DA1- TL431C

DA2- КР142ЕН5А

R1 100 Ом

С1- 200 мкФ +10 В

С2- 200 мкФ +10 В

С3- 500 мкФ +16В

VD1- Д226

TL431 - регулируемый стабилизатор параллельного типа (интегральный аналог стабилитрона).

Предназначена для использования в качестве источника опорного напряжения (ИОН) и регулируемого стабилитрона. Позволяет поддерживать высокоточное управляемое выходное напряжение для таких низковольтных применений как: материнские платы компьютеров и компьютерные приставки, измерительные приборы, зарядные устройства, импульсные источники электропитания и устройства с батарейным питанием.

· Опорное напряжение 2495 мВ ± 1%;

· Типовое значение изменения опорного напряжения 5 мВ в рабочем диапазоне температур;

· Типовое значение динамического импеданса 0,2 Ом;

· Напряжение на катоде до 36В;

· Рабочий ток до 100 мА;

· Рабочий диапазон температур -40…+85°С;

Микросхема изготавливается в корпусах как для обычного, так и поверхностного монтажа.

Таким образом, выбранный блок питания полностью удовлетворяет всем требования и является наиболее оптимальным решением в контексте данного устройства.

2. Конструкторско-технологический раздел

2.1 Выбор и обоснование способа изготовления печатной платы

Печатные платы представляют собой диэлектрическую пластину с нанесенным на нее токопроводящим рисунком (печатным монтажом) и отверстиями для монтажа элементов.

Печатный монтаж – это нанесение на изоляционное основание тонких электропроводящих покрытий (печатных проводников), выполняющих функции монтажных проводов для соединения элементов схемы.

Печатные платы служат для размещения и закрепления элементов устройства одном основании, а печатный монтаж обеспечивает связь между этими элементами в соответствии с принципиальной схемой устройства.

Наряду с традиционным проводным монтажом печатные платы являются основным этапом в подготовке устройства к производству и имеют ряд преимуществ, т. е. они позволяют:

1. Увеличить плотность монтажных соединений и возможность миниатюризации компоновки радиоэлементов и блоков внутри устройства;

2. Организовать изготовление печатных проводников и электрорадиоэлементов в одном технологическом цикле;

3. Гарантированная стабильность и повторяемость электрических характеристик;

4. Повышенная стойкость устройства к климатическим и механическим воздействиям;

5. Провести унификацию конструкторских и технологических решений;

6. Увеличить надежность;

7. Организовать комплексную автоматизацию работ по изготовлению устройства;

По конструктивному исполнению все печатные платы можно подразделить на односторонние, двухсторонние, однослойные и многослойные.