1. Использование программы оптимизации для минимизации функции
без каких-либо ограничений на расположение нулей и полюсов.2. После завершения итераций инвертирование всех полюсов и нулей, оказавшихся вне единичного круга. После этого продолжение оптимизации для нахождения нового минимума
.Расчет БИХ фильтров во временной области
Наряду с методами расчета фильтров, обладающих заданными частотными характеристиками, существуют методы расчета фильтров с заданными импульсными характеристиками. Пусть z-преобразование импульсной характеристики h(k) фильтра равно
(1)причем требуется, чтобы импульсная характеристика аппроксимировала заданную последовательность g(k) в диапазоне 0 ≤ k ≤ Р-1. Используя различные предположения, Баррас и Парке, а также Брофи и Салазар и другие авторы показали, что можно найти такой набор коэффициентов аi и bi что
(2)будет минимальной. Здесь w(k) — положительная весовая функция последовательности ошибки. Поскольку характеристика h(k) нелинейно зависит от параметров фильтра {аi} и {bi}, в общем случае задача минимизации е может быть решена только методом последовательных приближений. В частном случае, когда Р = n+m-1, искомые параметры фильтра, минимизирующие величину , можно найти, решив систему из (n+m) линейных уравнений. Рассмотрим этот метод подробнее. Для этого (считая, что а0= b0=1) представим импульсную характеристику фильтра в виде
(3) (4)В предположении, что g(k)= h(k) при k = 1, 2, . . ., m, решим систему уравнений вида (4.141) относительно коэффициентов ai, что дает g(k) = h(k) при k = m + 1, m + 2, . . ., m + n. Решив систему уравнений вида (4.140) при определенных значениях ai, найдем такие значения коэффициентов bi, для которых g(k} = h(k) при k = 1, 2, . . ., m. Эта процедура сводится к приравниванию первых (n+m+1) членов степенного разложения передаточной функции (1) z-преобразованию заданной импульсной характеристики фильтра g(k), усеченному за (n+m)-м членом. Такой метод аппроксимации степенных рядов рациональной функцией часто называют аппроксимацией Падэ. При аппроксимации заданной импульсной характеристики цифрового фильтра путем воспроизведения ее первых (n+m+1) отсчетов предполагается, что в целом импульсная и частотная характеристики получаемого в результате аппроксимации фильтра не будут существенно отличаться от заданных характеристик. Однако простого метода для нахождения хотя бы даже приближенно оценок отклонений любой из этих характеристик пока не существует. Приведем несколько конкретных примеров использования Лого метода для расчета КИХ-фильтров (примеры взяты из статьи Брофи и Салазара).
На фиг. 6 и 7 представлены характеристики двух фильтров, рассчитанных с использованием аппроксимации Падэ, которые предназначены для работы в системах передачи данных. Кривая А на фиг. 6 представляет собой требуемую амплитудную характеристику полосового фильтра. Частота дискретизации в данном и последующем примерах равна 7200 Гц. Этот фильтр должен обладать следующими характеристиками: ослабление на 3 дБ на частотах 200 и 3200 Гц, размах пульсаций в полосе пропускания менее 0,25 дБ, линейные фазовые характеристики в полосе пропускания и крутизна спада в полосе непропускания не менее 12 дБ на октаву. Кривой Б представлена амплитудная характеристика фильтра 24-го порядка, рассчитанного методом аппроксимации Падэ. Наибольшая абсолютная величина ошибки отсчетов импульсной характеристики фильтра равна 0,0018. Фазовая характеристика рассчитанного фильтра приведена на фиг. 6 внизу.
Аналогичные кривые для полосового фильтра 10-го порядка, рассчитанного методом аппроксимации амплитудной характеристики в предположении, что она имеет спады косинусоидальной формы, представлены на фиг. 7.
Фиг. 6. Расчет полосового фильтра с использованием аппроксимации методом Падэ (по Брофи и Салазару)
Необходимо учитывать, что, так как при аппроксимации методом Падэ фильтр рассчитывается только во временной области, получающаяся при этом аппроксимация амплитудной характеристики в частотной области, как правило, не обеспечивает в полосе непропускания ослабления, превышающего 40 дБ. Однако коэффициенты фильтра, найденные этим методом, часто можно использовать в качестве начальных значений при расчете БИХ-фильтров, обладающих заданными частотными свойствами, более сложными методами оптимизации.
Фиг. 7. Расчет полосового фильтра с использованием аппроксимации методом Падэ (по Брофи и Салазару)
Список литературы
1. Балашов Е.П. и др. Микро- и мини-ЭВМ / Е.П. Балашов, В.Л. Григорьев, Г.А. Петров: Учебное пособие для вузов. – Л.: Энергоатомиздат. Ленингр. отд-ние, 1984
2. Калабеков Б.А. Микропоцессоры и их применение в системах передачи и обработки сигналов: Учеб. пособие для вузов. – М.: Радио и связь, 1988.
3. Микропроцессорный комплект К1810: Структура, прграммирование, применение: Справочная книга/ Ю.М. Казаринов, В.Н. Номоконов, Г.С. Подклетнов, Ф.В. Филиппов; Под ред. Ю.М. Казаринова.- М.: Высш. шк., 1900.
4. Микропроцессоры: системы программирования и отладки / В.А. Мясников, М.Б. Игнатьев, А.А. Кочкин, Ю.Е. Шейнин; Под ред. В.А. Мясникова, М.Б. Игнатьева. – М.: Энергоатомиздат, 1985.