Далее найдем среднюю наработку на отказ
, применив следующую формулу: (3.7)Итак, имеем:
часов.Вероятность безотказной работы определяется исходя из формулы (3.3), приведенной к следующему виду:
где
время безотказной работы.Итак, имеем:
Среднее время восстановления определяется последующей формуле [8]:
, (3.9)где
-вероятность отказа элемента i-ой группы; - случайное время восстановления элемента i-ой группы.подставив значения в формулу (3.9), получим среднее время восстановления
=0.877ч. Далее можно определить вероятность восстановления по формуле: , (3.10)где
=0.72ч.Следовательно по формуле (3.10) определим
, что больше .Таким образом, полученные данные удовлетворяют требованиям по надежности, так как при заданном времени непрерывной работы
ч проектируемый блок будет работать с вероятностью . При этом он будет иметь среднюю наработку на отказ ч и вероятность восстановления следовательно, дополнительных мер по повышению надежности цифрового синтезатора ч.м. - сигналов не требуется.Расчет массы изделия
Рассчитаем габаритные размеры, объем и массу изделия по формулам:
V = *
, (3.11)M = Km * , (3.12)
M = M' * V,(3.13)
Здесь V, M – общий объем и масса изделия;
kv – обобщенный коэффициент заполнения объема изделия элементами
Vi,Mi – значения установочных объемов и массы i-х элементов конструкции;
Km – обобщенный коэффициент объемной массы изделия;
М' – объемная масса аппарата;
n – общее количество элементов конструкции изделия.
Исходными данными для расчета являются:
1) количество элементов в блоке;
2) установочная площадь каждого элемента;
3) установочный объем каждого элемента;
4) установочный вес каждого элемента;
5) количество деталей;
6) объем блока;
7) вес блока;
8) количество наименований деталей;
9) линейные размеры.
kv возьмем равным 0.55. Для прибора можно принять Мў=0.4кг/дм3.
Сведения об установочных размерах элементов и их массе сведены в таблицу 3.2
Таблица 3.2
Значение установочного объема и массы элементов изделия
Наименование элемента | Кол-во | Vi,мм3 | Мi,гр. |
1 | 2 | 3 | 4 |
1.Плата: | |||
Резистор МЛТ–0.25 | 9 | 1865 | 2.2 |
Конденсатор К53-1А | 4 | 2016 | 6 |
Микросхема 533ТЛ2 | 2 | 1320 | 2.3 |
Микросхема 533АГ3 | 2 | 1210 | 1.9 |
Микросхема 533ЛА3 | 2 | 1150 | 1.7 |
Микросхема 573РФ2 | 6 | 1920 | 3.1 |
Микросхема 533ИК4 | 4 | 1310 | 2.1 |
Микросхема КМ1118ПА2А | 1 | 1540 | 3.3 |
Микросхема К1518ВЖ1 | 1 | 2320 | 4.3 |
Микросхема 533ЛП5 | 3 | 1410 | 2.8 |
Микросхема 1108ПА1А | 1 | 1830 | 3.2 |
Плата | 1 | 39400 | 43.4 |
2.Плата сетевая | 1 | 19200 | 19.2 |
3.Тумблер | 2 | 17640 | 24 |
4.Разьем | 4 | 7500 | 50 |
5.Трансформатор | 1 | 126000 | 500 |
6.Разьем | 4 | 7500 | 50 |
7.Ручка | 2 | 2386 | 5 |
8.Панель | 1 | 16500 | 50 |
Суммарный объем, занимаемый всеми элементами конструкции, посчитанный по табличным данным составляет
=2058625мм3По формуле (4.1.1)определяем ориентировочный объем блока
V=6548000мм3
Согласно проведенным расчетам выбираем габаритные размеры блока 320х245х150 мм.
По формуле (3.12) определяем ориентировочную массу блока:
М =2.426 кг
В соответствии с ТЗ масса блока должна быть не более 3 кг.
По результатам расчета можно сделать вывод: полученные данные расчета вполне удовлетворяют требованиям технического задания. Коэффициент использования объемаравен 0.55 потому.
Расчет теплового режима
Все компоненты блока сопряжения функционируют в строго ограниченном температурном диапазоне. Выход температуры за предельно допустимые пределы может привести к необратимым структурным изменениям. Высокая надёжность и длительный срок службы ЭВА будут гарантированы, если температура среды внутри конструкции нормальная (15±5°C) и изменяется не более чем на 2°C в час. Для выполнения этого условия необходимо выбрать оптимальную систему охлаждения.
Приведем методику методику расчета.
Исходными данными для выбора охлаждения являются:
1) суммарная мощность P, рассеиваемая в конструктивном модуле;
2) давление окружающей среды;
3) давление внутри блока;
4) коэффициент заполнения блока;
5) габаритные размеры блока;
6) время непрерывной работы t.
Приведем порядок расчета блока в герметичном корпусе:
1) рассчитывается поверхность корпуса блока по формуле:
Sк=2[l1*l2+(l1+l2)*l3],(3.13)
где l1,l2 – горизонтальные размеры корпуса;
l3 – вертикальный размер корпуса.
2) определяется условная поверхность нагретой зоны по формуле
Sк=2[l1*l2+(l1+l2)*l3*Кз], (3.14)
где Кз – коэффициент заполнения.
3) определяется удельная мощность корпуса по формуле:
qк=Рз/Sк (3.15)
где Рз – мощность, рассеиваемая нагретой зоной.
4) рассчитывается удельная мощность нагретой зоны
qз=Рз/Sз (3.16)
5) находится коэффициент J1 в зависимости от удельной мощности корпуса блока
J1=0.1472*qк-0.2962*10-3*qк2+0.3127*10-6*qк3 (3.17)
6) находится коэффициент J2 в зависимости от удельной мощности нагретой зоны:
J2=0.1390*qз-0.1223*10-3*qз2+0.0698*10-6*qз3 (3.18)
7) находится коэффициент Кн1 в зависимости от давления среды вне корпуса блока :
Кн1=0.82+ ,(3.19)
где Н1 – величина атмосферного давления вне корпуса.
8) находится коэффициент Кн2 в зависимости от давления среды внутри корпуса блока Н2
Кн2=0.8+ , (3.20)
9) определяется перегрев корпуса:
Jк=J1*Кн1. (3.21)
10) рассчитывается перегрев нагретой зоны:
Jз=Jк+(J2–J1)*Кн2. (3.22)
11) определяется средний перегрев воздуха в блоке:
Jв=0.5*(Jк+Jз)(3.23)
12) определяется удельная мощность элемента:
qэл=Рэл/Sэл(3.24)
где Рэл – мощность, рассеиваемая элементом, температуру которого требуется определить;
Sэл – площадь поверхности элемента, омываемая воздухом.
13) рассчитывается перегрев поверхности элементов:
Jэл=Jз(а+b*qэл/qз) (3.25)
14) рассчитывается перегрев окружающей элемент среды:
Jэ-с=Jв(0.75+0.25*qэл/qз)(3.26)
15) определяется температура корпуса блока: