где: л – максимальное расстояние между двумя переходами от пита к ленду в канальном ходе на дорожке диска (обычно л=10);
f – скорость считывания канального хода (потока данных) бит/с.
Wдп(P) = (КуКф)/(Тф+1)
Тф = (4л)/(2pf) = л/(7pf) = 10*10-6/(7*3,14*300) = 1,5*10-9;
Кф = 2,87 (В/мкм);
Wдп(P) = 11,48/(1,5*10-9Т + 1);
Усилитель и усилитель мощности с высокой степенью точности можно представить как безинерционные звенья с коэффициентами передачи kусиkум соответственно. Передаточная функция корректирующего устройства определяется на этапе синтеза САРФ, исходя из требований точности устойчивости и качества переходного процесса.
Сигнал выхода усилителя мощности поступает на исполнительный двигатель, как правило линейный электродвигатель (ЛЭД), работающий по принципу громкоговорителя. Составными частями такого двигателя являются: катушка, постоянный магнит и, возможно, магнитопровод из магнитномягкого железа.
Пригодные к применению конструкции ЛЭД могут быть разделены на две основные группы с подвижной катушкой и с подвижным магнитом.
Конструкция с подвижной катушкой (рис.5) имеет ряд преимуществ и недостатков. Помимо проблем обрыва проводников, подводящих ток к катушке, движущая часть имеет обычно плохой тепловой контакт с окружающей средой (высокое тепловое сопротивление RT). Тепло, выделяющееся в подвижной катушке, приводит к росту температуры всей подвижной части, в частности объектива, что нежелательно. Это в конечном счете приводит к уменьшению среднего значения силы, развиваемой данным ЛЭД.
Рис.5. Привод головки с подвижной катушкой.
Достоинством системы с подвижной катушкой является то, что стационарная магнитная система может быть увеличена и, следовательно, с ее помощью можно обеспечить более сильное магнитное поле (высокое значение магнитной индукции В).
Альтернативным решением может быть конструкция с подвижным постоянным магнитом и неподвижной катушкой. В этом случае отвод тепла от катушки не является серьезной проблемой (низкое RT) и максимально допустимая температура катушки Ткат maxможет быть выше, так как она изолирована от объектива. Но развиваемая ЛЭД сила будет меньше из-за ослабления магнитного поля (низкое В), поскольку объем магнита меньше. Увеличение же магнита нежелательно, так как приводит к возрастанию массы подвижной части, что ухудшает динамические свойства САРФ.
Поэтому в реальных конструкциях применяется ЛЭД с подвижной катушкой.
Поскольку оба типа ЛЭД являются одинаковыми по принципу действия и различаются лишь подвижностью составляющих их частей, уравнения, описывающие их поведение можно представить в виде:
,где: L– индуктивность катушки;
R=Rк+Rум - сопротивление катушки и внутреннее сопротивление усилителя мощности;
I- ток катушки;
В – магнитная индукция;
l – Длина проводника катушки в магнитном поле;
F– Сила действующая на катушку;
UУМ – напряжение на выходе усилителя мощности, или в операторной форме:
(Т·Р+1) F=LлэдUум; (2)
где
- постоянная времени ЛЭД; - коэффициент передачи ЛЭД;l = р dkW;
W – Число витков катушки ЛЭД.
Определим передаточную Функцию ЛЭД:
WЛЭД = LЛЭД/(TP + 1);
Подставим значения:
WЛЭД = 4,71/(5*10-4P + 1).
В общем случае движение подвижной части зависит от воздействий, обусловленных наличием упругих элементов, рассеянием энергии в катушке при ее движении в магнитном поле, особенностей подвески подвижной системы.
Основная цель, стоящая при разработке подвески, обеспечить движение головки только по жестко заданным направлениям. Подвески могут быть с помощью линейных подшипников механического или электромагнитного типа и пружинных гибких направляющих. В первом случае перемещение в направлении регулирования ничем не ограничивается, а в перпендикулярных направлениях предотвращается путем выбора соответствующих подшипников с минимально возможными допусками у механических и максимальной жесткостью у электромагнитных. Тогда с учетом демпфирования в подвесе и диссинации энергии в катушке, уравнения движения подвижной части имеют вид:
,где
- коэффициент вязкого трения,или в операторной форме
,где
.k = 1/0.03 = 33;
T1 = 0.33;
Определим передаточную функцию подвижной головки:
Wп = k/P(T1P +1);
Подставим значения:
Wп = 33/P(0.33P + 1).
2. Структурная схема САР
В силу малого значения Tф передаточная функция датчика положения принимает вид:
W1(P) = kдп
Определим передаточную функцию разомкнутой системы:
W(P) = Wдп (P) * WЛЭД(P) * Wп(P)
W(P) = 1784,3 /(S(5*10-4P+1)(0.33P+1))
K1 = 1784,3; 20LogK1=65 дб
T1 = 0.33
T2 = 5*10-4
3. Синтез САР
При синтезе надо исходить из того, что объект регулирования – неизменная часть, а синтезу подлежат корректирующее устройство и регулятор – изменяемая часть системы.
Полученная выше система является неустойчивой. Поэтому необходимо произвести расчет корректирующего устройства, используя частотный метод синтеза, основанный на построении желаемой ЛАХ – Lж(S).
При формировании желаемой ЛАХ следует учитывать следующие рекомендации:
1) Вид низкочастотной области ЛАХ определяет главным образом точность работы САР. Среднечастотная область, прилегающего к частоте среза wср,определяет в основном запас устойчивости, т.е. качество переходных процессов. Высокочастотная область лишь незначительно влияет на качество процессов управления.
2) Желаемая ЛАХ в возможно большем интервале частот должна совпадать с ЛАХ исходной нескорректированной системы L. В противном случае реализация КУ может существенно усложниться.
3) В низкочастотной области наклон желаемой ЛАХ должен составлять -20×n дБ/дек, где n - порядок астатизма. Желаемая ЛАХ на частоте w =1 с-1 должна иметь ординату 20lgk, где K – общий коэффициент усиления разомкнутой системы (если n =0, то на частоте w=0).
4) Если задана допустимая ошибка emaxпри гармоническом входном воздействии
g(t) =g max sin wgt,
то желаемая ЛАХ должна располагаться выше контрольной точки Ak, имеющей на частоте wgординату
В районе частоты среза cр наклон желаемой ЛАХ выбирается равным
-20дб/дек, что позволяет обеспечить запас устойчивости. Чем больше протяженность участка с наклоном - 20 дб/дек, тем больше запас устойчивости, т.е. выше качество переходного процесса.
Фазовая характеристика в этой области частот имеет вид
Для того, чтобы обеспечить заданное качество запас устойчивости по фазе на частоте среза c
должен составлять 30¸60°, а запас устойчивости по амплитуде, определяемый на частоте где j(w)=-180°, должен составлять 6¸10 дб. Это достигается, если постоянные времени удовлетворяют условиям .Исходя из рисунка:
wо = 8000 с-1;
По формулам выше:
t = 0.23*10-3 с;
T = 0.04*10-3 с;
После построения желаемой ЛАХ определяется ЛАХ корректирующего устройства по формуле
По виду этой кривой можно определить передаточную функцию КУ. Для этого следует построить симптотической ЛАХ КУ, а затем определить ее наклон на частотах w®0, и точки перегиба. Наклон характеристики на частотах w®0 в –20×n с/дек определяет сомножитель 1/sn в Wку(s). Перегиб ЛАХ на частоте w=1/T на –20×n с/дек приводит к появлению членов 1/(Ts+1)nв передаточной функции КУ, а перегиб ЛАХ на частоте w=1/t на –20×n с/дек к появлению членов (Ts+1)n. Коэффициент передачи КУ определяется по значению ординаты симптотической ЛАХ КУ на частоте w=1 с-1 (если n =0, то на частоте w=0).
Процесс построения желаемой ЛАХ и корректирующего устройства в первом приближении имеет вид (вложенная в пояснительную записку логарифмическая бумага (формат А3)):
4. Моделирование САР
Моделирование САР будем производить с помощью пакета ТАУ.
1. Моделирование нескорректированной (желаемой) ЛАХ.
При синтезе для получения необходимых результатов мы уменьшили К в 100 раз, а Т1 увеличили в 100 раз. Вычисленное значение w0 совпадает с реальным.