Смекни!
smekni.com

Система для визначення складу вихлопних газів автомобілів (стр. 5 из 6)

Рисунок 3.2 - Схема включення мікроконтролера

3.2 Інтерфейс RS-485

Обмін інформацією між інформаційно - вимірювальною системою і персональним комп’ютером здійснюється за допомогою інтерфейсу RS - 485.

При проектуванні системи на базі технічних засобів, слід враховувати ряд важливих факторів: кількість передавачів і приймачів, швидкість передачі даних та відстань обіну даними. За допомогою інтерфейсу RS 485 можна передавати код, як в послідовному так і в паралельному форматі. У 99% випадків передача даних відбувається у послідовному форматі.

Згідно стандарту на інтерфейси RS-485, драйвер інтерфейсу не повинен виходити з ладу при закороченні будь-якого із сигнальних дротів на шину живлення або на землю. Також згідно стандарту всі драйвери цих інтерфейсів повинні мати захист від перегріву і автоматично вимикатись при нагріві 150 0С.

Мережа, побудована на інтерфейсі RS-485, являє собою прийомопередавач з'єднаний за допомогою кручениої пари - двох скручених проводів. В основі інтерфейсу RS-485 лежить принцип диференціальної (балансової) передачі даних. Суть його полягає в передачі одного сигналу по двох проводах. Причому по одному проводі (умовно A) йде оригінальний сигнал, а по іншому (умовно B) - його інверсна копія. Іншими словами, якщо на одному проводі "1", то на іншому "0" і навпаки. Таким чином, між двома проводами крученої пари завжди є різниця потенціалів: при "1" вона позитивна, при "0" - негативна.

Саме цією різницею потенціалів і передається сигнал. Такий спосіб передачі забезпечує високу стійкість до синфазної перешкоди. Синфазною називають перешкоду, що діє на обох проводів лінії однаково.

Апаратна реалізація інтерфейсу - мікросхеми приймачів і передавачів з диференціальними входами/виходами (до лінії) і цифровими портами.

Отже для використовуваного в даному курсовому проекті інтерфейсу RS-485. Цифровий вихід приймача (RO) підключається до порту приймача UART (RX). Цифровий вхід передавача (DІ) до порту передавача UART (TX). Оскільки на диференціальній стороні приймач і передавач з'єднані, то під час прийому потрібно відключати передавач, а під час передачі - приймач.

Для цього служать керуючі входи - дозвіл приймача (RE) і дозволу передавача (DE). Тому що вхід RE інверсний, то його можна з'єднати з DE і переключати приймач і передавач одним сигналом з будь-якого порту мікроконтролера. При рівні "0" - робота на прийом, при "1" - на передачу.

Приймач, одержуючи на диференціальних входах (AB) різниця потенціалів (UAB) переводить їх у цифровий сигнал на виході RO. Чутливість приймача може бути різної, але гарантований граничний діапазон розпізнавання сигналу виробники мікросхем приемопередавачів пишуть у документації. Звичайно ці пороги складають ± 200 мв. Тобто, коли UAB > +200 мв - приймач визначає "1", коли UAB < -200 мв - приймач визначає "0".

Якщо різниця потенціалів у лінії настільки мала, що не виходить за граничні значення - правильне розпізнавання сигналу не гарантується. Крім того, у лінії можуть бути і не синфазні перешкоди, що спотворять настільки слабкий сигнал.

Усі пристрої підключаються до однієї крученої пари однаково: прямі виходи (A) до одного проводу, інверсні (B) - до іншого. Вхідний опір приймача з боку лінії (RAB) звичайно складає 12 кОм, тому що потужність передавача не безмежна, це створює обмеження на кількість приймачів, підключених до лінії. Відповідно до специфікації RS-485 з обліком

резисторів, передавач може вести до 32 приймачів. Однак є ряд мікросхем з підвищеним вхідним опором, що дозволяє підключити до лінії значно більше ніж 32 пристрої.

Максимальна швидкість зв'язку по специфікації RS-485 може досягати 10 Мбіт/сек. Максимальна відстань - 1200 м. Якщо необхідно організувати зв'язок на відстані більшому 1200 м або підключити більше пристроїв, чим допускає навантажувальна здатність передавача - застосовують спеціальні повторювачі (репитери).

Стандартні параметри інтерфейсу RS-485

- припустиме число передавачів / приймачів 10;

- максимальна довжина кабелю 1200 м;

- максимальна швидкість зв'язку 10 Мбіт/с;

- діапазон напруг "1" передавача +2...+10 В;

- діапазон напруг "0" передавача -2...-10 В;

- діапазон синфазної напруги передавача -3...+3 В;

- припустимий діапазон напруг приймача -7...+7 В;

- вхідний опір приймача 4 кОм;

На рисунку 3.3 наведена функціональна схема інтерфейсу RS-485.

Рисунок 3.3- Схема інтерфейсу RS-485

Мікроконтролер DD3 має у своєму складі стандартний USART за допомогою, якого здійснюється обмін даними із зовнішнім пристроєм в послідовному форматі. Сигнал TхD (передача даних) поступає на вхід мікросхеми на вхід інтерфейсу RS-485 (DD5) і перетворюється в несиметричний сигнал у форматі стандартного USART. Сигнал стандартного USART, який має рівень від 0 до 5 В.

3.3 Вибір джерела опорної напруги

Живлення всіх елементів має бути стабільним, щоб уникнути збоїв у роботі системи. Для забезпечення високої стабільності використаємо джерело опорної напруги. Найкращими джерелами, які випускаються в теперішній час є: REF-02, AD586, МС7805, LM113, TL431. Одним з найкращих джерел опорної напруги є мікросхема МС7805. Схема підключення опорного джерела живлення

МС7805 показана на рисунку 3.4.

Рисунок 3.4 – Схема включення джерела живлення

Джерело опорної напруги МС7805 має такі технічні характеристики:

- відхилення напруги від опорного значення: ± 0,02 % В;

- струм споживання 2 μА;

- діапазон струму навантаження: від 0 до 10 mА;

- температурний коефіцієнт вихідної напруги: 10-5/ ºС .

3.4 Кисневий датчик А-01

Кисневі датчики для автомобільних газоаналізаторів фірми IT працюють за добре відомим принципом гальванічних осередків, що дає споживачеві

достовірний сигнал по парціальному тиску кисню в вимірювальної голівці.

Кисень проникає крізь синтетичну кіслородопроводящую мембрану в головці датчика і потім відновлюється на поверхні катода. Цей процес відновлення генерує електричний струм, прямо пропорційний парціальному тиску кисню перед датчиком.

Електрохімічна реакція, яка відбувається на поверхні катода, дуже складна. Спрощено, процес може бути виражений наступним хімічним рівнянням:

O2 + 2 H2O + 4 e-=> 4 OH-(1) .

Матеріал анода окислюється для забезпечення балансу електрохімічних реакцій осередку за формулою:

2 Pb => 2 Pb2 + + 4 e-(2) .

Повна хімічна реакція осередку:

2 Pb + O2 => 2 PbO (3) .

При наявності кисню і коли анод і катод електрично з'єднані з провідником, має місце відновний процес, і іони утворюють потік всередині датчика. Зовнішній електричний струм, потрібних для врівноваження потоку іонів, може бути виміряна на резисторі, послідовно з'єднаний з катодом і анодом, як показано на рис. (1). Відповідно до рівнянням (2), матеріал анода поступово споживається процесами, що відбуваються на аноді. Тому датчик має обмежений термін служби, який залежить від доступної маси матеріалу анода та ефективності катодного процесу.

Електрохімічна реакція, також як і процес дифузії кисню крізь мембрану, залежить від температури. У більшості практичних випадків потрібно отримувати температурно-незалежний сигнал у всьому цьому температурному діапазоні. Для компенсації температурної залежності сигналу датчик забезпечений термісторним зв'язком, що має відповідні температурні характеристики.

Датчики серії А фірми IT спроектовані для застосування в автомобільних газоаналізатора. Максимальна ефективність використання буде досягнута, якщо: датчик не буде працювати при температурах, що виходять за межі рекомендованої області, зазначеної у технічній характеристиці датчика; буде захищена від водяного конденсату головка датчика; не підключений ні до якого виду зміщених напруг або не заряджається зовнішнім електричним потенціалом; приєднаний до вимірювальної апаратури з мінімальним вхідним опором 10 кОм; установка / заміна датчика повинна здійснюватися підготовленими фахівцями

Структурна схема датчика A-01 зображена на рисунку 3.5.

Рисунок 3.5 – Структурна схема датчика А-01

Його характеристики:

- діапазон: від 0 до 100% кисню;

- електричний інтерфейс: РCB;

- електричний роз'єм: 3 pin molex;

- робоча температура: від 0 до 50 ° C ;

- вихідна напруга: від 7 до 13 мВ, або на вимогу замовника;

- від 25.1 до 100% кисню: ± 1.0% відносно;

- рекомендоване навантаження: не менше 10 кОм;

- температурна компенсація: вбудована NTC компенсація;

- оптимальна температура зберігання: від 5 до 25 ° C;

- максимальна температура зберігання: від -15 до 60 ° C;

- вага: приблизно 25 г.

Матеріали, з якими можливий контакт: Поліамід 12, нержавіюча сталь

На рисунку 3.6 показаний зовнішній вигляд кисневого датчика А-01 [7].

Рисунок 3.6 – Кисневий датчик А-01

4 Електричні розрахунки компонентів системи вимірювального контролю вологості та температури в теплицях