АЦП використовує метод перерозподілу заряду. Коли входи внутрішньо перемикаються, перемикання може привести до перехідних процесів на вхідному сигналі. Ці перехідні процеси загасають і встановлюються до появи помилкового перетворення.
Відмінними рисами мікроконтролерів MSP430 є висока якість виготовлення, невелика кількість апаратних та програмних помилок та наднизьке енегроспоживання
Основні характеристики MSP430F149:
- об’єм Flash-пам’яті 60 Кбайт;
- об’єм оперативної пам’яті 2 Кбайт;
- напруга живлення 1.8 - 3.6 V;
- низьке споживання струму : 280 mk, 1MHz, 2.2 V, 2.5 mk, 4 kHz, 2.2V;
- п'ять режимів зниження споживання струму: LPM0-LPM4 (30 mk - 0.8 mk);
- повернення в робочий режим за 6 mk;
- 16-бітова RISC архітектура, час виконання інструкції - 125 nS;
- єдний 32 кГц керамічний резонатор, внутрішня системна частота - до 3.3 МГц;
- 16-бітовий таймер з 6 регістрами спостереження/порівняння;
- 16-бітовий таймер з 3 регістрами спостереження/порівняння;
- вбудований компаратор;
- 12 розрядний АЦП із джерелом опорної напруги;
- сторожовий таймер ( 16 біт );
- порти вводу-виводу : 32 ліній;
- два апаратних незалежних послідовних порта введення- виведення USART;
- послідовне програмування ( JTAG );
- корпус: 64 QFP.
Функціональна схема мікроконтролера MSP430F149 представлена на рисунку 3.2.
Рисунок 3.2 – Схема підключення мікроконтролера MSP430F149
Перевагами їх є широко розвинута периферія, ідеально підходять для керуванням технологічними процесами.
До виводів XIN, XOUT мікроконтролера підключається кварцевий резонатор ZQ, який задає частоту роботи контролера. Таке підключення дозволяє дуже точно задати тактову частоту мікроконтролера (розсіювання
частот зазвичай становить не більше 0,01%). Такий рівень точності необхідний для організації інтерфейсу мікроконтролера з іншими пристроями. Номінали ємностей конденсаторів в даній схемі підключення визначаються виробником мікроконтролера для конкретної резонансної частоти кварца. При використанні малих ємностей тактові імпульси будуть мати кращу форму, оскільки при підключені дуже великої ємності це призведе до деградації форми імпульсів і мікроконтролер не буде запускатися. Запуск мікроконтролера повинен відбуватись лише тоді, коли встановилась необхідна напруга живлення. Для цього використовують вивід RESET (скидання мікроконтролера в початковий стан).
3.2 Вибір перетворювача рівня сигналу
Процес передачі між інформаційно - вимірювальною системою і персональним комп’ютером здійснюється за допомогою інтерфейсу RS - 485.
При проектуванні системи на базі технічних засобів, слід враховувати ряд важливих факторів: кількість передавачів і приймачів, швидкість передачі даних та відстань обміну даними. За допомогою інтерфейсу RS 485 можна передавати код, як в послідовному так і в паралельному форматі. У 99% випадків передача даних відбувається у послідовному форматі. Інтерфейс RS-485 (інша назва - EІ/TІ-485) - один з найбільш розповсюджених стандартів фізичного рівня зв'язку. Згідно стандарту на інтерфейси RS-485, RS-422, драйвер інтерфейсу не повинен виходити з ладу при закороченні будь-якого із сигнальних дротів на шину живлення або на землю. Також згідно стандарту всі драйвери цих інтерфейсів повинні мати захист від перегріву і автоматично вимикатись при нагріві 150 0С.
Мережа, побудована на інтерфейсі RS-485, являє собою прийомо-передавач з'єднаний за допомогою витої пари - двох скручених проводів. В основі інтерфейсу RS-485 лежить принцип диференціальної (балансової) передачі даних. Отже для використовуваного в даному курсовому проекті інтерфейсу RS-485. Цифровий вихід приймача (RO) підключається до порту приймача UART (RX). Цифровий вхід передавача (DІ) до порту передавача UART (TX). Оскільки на диференціальній стороні приймач і передавач з'єднані, то під час прийому потрібно відключати передавач, а під час передачі - приймач. Для цього служать керуючі входи - дозвіл приймача (RE) і дозволу передавача (DE). Тому що вхід RE інверсний, те його можна з'єднати з DE і переключати приймач і передавач одним сигналом з будь-якого порту мікроконтролера. При рівні "0" - робота на прийом, при "1" - на передачу. Якщо різниця потенціалів у лінії настільки мала, що не виходить за граничні значення - правильне розпізнавання сигналу не гарантується. Крім того, у лінії можуть бути і не синфазні перешкоди, що спотворять настільки слабкий сигнал. Усі пристрої підключаються до однієї витої пари однаково: прямі виходи (A) до одного проводу, інверсні (B) - до іншого. Вхідний опір приймача з боку лінії (RAB) звичайно складає 12 кОм, тому що потужність передавача не безмежна, це створює обмеження на кількість приймачів, підключених до лінії. Відповідно до специфікації RS-485 з обліком резисторів, передавач може вести до 32 приймачів. Однак є ряд мікросхем з підвищеним вхідним опором, що дозволяє підключити до лінії значно більше ніж 32 пристрої. Максимальна швидкість зв'язку по специфікації RS-485 може досягати 10 Мбот/сек. Максимальна відстань - 1200 м. Якщо необхідно організувати зв'язок на відстані більшому 1200 м або підключити більше пристроїв, чим допускає навантажувальна здатність передавача - застосовують спеціальні повторювачі (репитери).
Стандартні параметри інтерфейсу RS-485
- припустиме число передавачів / приймачів 1/10;
- максимальна довжина кабелю 1200 м;
- максимальна швидкість зв'язку 10 Мбот/с;
- діапазон напруг "1" передавача +2...+10 В;
- діапазон напруг "0" передавача -2...-10 В;
- діапазон синфазної напруги передавача -3...+3 В;
- припустимий діапазон напруг приймача -7...+7 В;
- максимальний струм короткого замикання драйвера 150 мА;
- припустимий опір навантаження передавача 100 Ом
- вхідний опір приймача 4 кОм;
- максимальний час наростання сигналу передавача 10% біт.
На рисунку 3.3 наведена схема інтерфейсу RS-485.
Рисунок 3.3 - Схема інтерфейсу RS-485
Мікроконтролер DD1 має у своєму складі стандартний USART за допомогою, якого здійснюється обмін даними із зовнішнім пристроєм в послідовному форматі. Сигнал TхD (передача даних) поступає на вхід мікросхеми DD3 (ADM 488), яка є драйвером інтерфейсу RS-485 і передається по сигнальній лінії зв’язку на певну відстань. На приймальній стороні симетричний сигнал знову поступає на вхід інтерфейсу RS-485 (DD2) і перетворюється в несиметричний сигнал у форматі стандартного USART. Сигнал стандартного USART, який має рівень від 0 до 5 В з виходу мікросхеми DD4 поступає на вхід мікросхеми DD4 (МАХ 232), яка уявляє собою перетворювач рівнів для інтерфейсу RS-232. Вихідний сигнал мікросхеми DD5 у форматі RS-232 поступає на вхід RxD послідовного порта персонального ЕОМ. Сигнал ТxD з виходу послідовного порта ПЕОМ поступає на вхід мікросхема DD5, де за допомогою якої він перетворюється до рівня стандартного USART. Мікросхеми DD2, DD4 живляться від джерела з напругою +5В. Для забезпечення їх живленням сигнали DTR і RTS програмовано встановлюються у рівень +12В і з’єднуються між собою через розв’язуючі діоди VD1, VD2. Через ці діоди та балансний резистор R1, напруга сигналу DTR і RTS поступає на вхід поступового лінійного інтегруючого стабілізатора напруги МС7805, який забезпечує стабілізацію п’ятивольтового живлення для мікросхем DD5, DD6.
Технічні характеристики перетворювача рівня ADM488:
- діапазон вхідної напруги низького рівня: від 0 до 0,8 В;
- діапазон вхідної напруги високого рівня: від 2,4 до 5 В;
- час установки вихідної напруги: 4 мс;
- діапазон вихідної напруги: ± 10 В;
- швидкість передачі даних: 19200 біт;
- максимальна помилка при передачі: 0,2 %.
3.3 Вибір джерела живлення
Живлення всіх елементів має бути стабільним, щоб уникнути збоїв у роботі системи. Для забезпечення високої стабільності використаємо джерело опорної напруги. Найкращими джерелами, які випускаються в теперішній час є: REF-02, AD586, МС780, LM113, TL431. Одним з найкращих джерел опорної напруги є мікросхема МС780. Схема підключення опорного джерела живлення
МС780 показана на рисунку 3.4.Рисунок 3.4 – Схема включення джерела живлення
Джерело опорної напруги МС780 має такі технічні характеристики:
- відхилення напруги від опорного значення: ± 0,02 В;
- струм споживання 2 μА;
- діапазон струму навантаження: від 0 до 10 mА;
- температурний коефіцієнт вихідної напруги: 10-5ºС .
Для того щоб вхідний сигнал якомога менше спотворити, при його проходженні через резистори, які будемо використовуватися для ділення напруги та схем включення мікроелементів – будуть прецензійними .
3.4 Вибір датчика температури KTY81-121
Вибір датчика температури проведемо за наступним властивостями, даний датчик мати похибку не більше 2%, а також працювати в діапазоні від
-50 до 150
.Даним критеріям підходить датчик KTY81-121 рисунок 3.5 фірми NXP Semiconductors.
Рисунок 3.5 – Датчик KTY81-121
Це температурний датчик термістор - напівпровідниковий резистор, електричний опір якого істотно зменшується або зростає зі зростанням температури. Для терморезистора характерні великий температурний коефіцієнт опору (ТКС) (в десятки разів перевищує цей коефіцієнт у металів), простота пристрою, здатність працювати в різних кліматичних умовах при значних механічних навантаженнях, стабільність характеристик у часі. Терморезистор виготовляють у вигляді стержнів, трубок, дисків, шайб, намистин і тонких пластинок переважно методами порошкової металургії, їх розміри можуть варіюватися в межах від 1-10 мкм до 1-2 см. Основними параметрами терморезистора є номінальна опір, температурний коефіцієнт опору, інтервал робочих температур, максимально допустима потужність розсіювання.