Використовують й інші показники якості. Досить часто (особливо в задачах оцінювання параметрів) закритерій якості приймають саму функцію правдоподібності.
Розглянуті показники якості рішення використовують для формулювання критеріїв оптимальності рішень при розв’язанні задач обробки сигналів.
3. Критерії оптимальності рішень у задачі перевірки гіпотез
Розглянемо критерії оптимальності рішень при вирішенні задач перевірки гіпотез.
Байєсівський критерій оптимальності використовує середній ризик (2) і вимагає його мінімізації (у загальному випадку забезпечення нижньої границі):
Рішення – це гіпотеза
Критерій мінімуму середньої ймовірності похибки (критерій Зігерта-Котельникова або критерій ідеального спостерігача). У цьому разі використовується показник якості рішення (3). Цей критерій оптимальності вимагає мінімізації величини середньої ймовірності похибки:
або
Критерій називають також критерієм „ідеального спостерігача”, тому що можна уявити собі, що деякий спостерігач задає вагову матрицю
Іноді зручніше використовувати замість
Критерій максимуму апостеріорної ймовірності. Згідно з показником якості (5) критерій оптимальності рішення задається так: серед гіпотез
Мінімаксний критерій оптимальності. Введені вище критерії по суті вимагали знання розподілу
У теорії статистичних рішень доводиться, що рішення буде таке саме, якщо використовувати умовні ризики
та вимагати, щоб рішення шукалось за умови
Мінімаксний критерій приводить до байєсівського рішення в умовах найгіршого розподілу параметра (переданого сигналу).
Критерій оптимальності Неймана-Пірсона. Спинимося детальніше на ілюстрованому прикладі приймання сигналів амплітудної маніпуляції. Тут задається лише дві гіпотези. Гіпотезу
У задачі перевірки гіпотези
та
Ситуація, коли приймається гіпотеза
Крім імовірностей похибок
та
Критерій оптимальності рішення Неймана-Пірсона використовує два показники якості рішень – умовні ймовірності хибної тривоги та пропуску цілі. У класичній літературі з теорії статистичних рішень ця обставина не підкреслюється. Але на рівні сучасної теорії вибору рішень (чи оптимізації систем і пристроїв) про це треба пам’ятати.
Критерій Неймана-Пірсона вимагає знаходження рішення, що забезпечує мінімальне значення умовної ймовірності пропуску цілі
при обмеженні умовної ймовірності хибної тривоги
Замість (12) часто використовують умову максимізації ймовірності правильного рішення про наявність цілі:
4. Критерії оптимальності в задачі оцінювання параметрів
Критерії оптимальності в задачі оцінювання параметрів розподілів ймовірностей мають деякі відмінності порівняно із задачею перевірки гіпотез. Різниця у тому, що параметр функції правдоподібності
Показник середнього ризику. Середній ризик – це середнє значення функції втрат:
Тут припускається, що вимірність вектора параметрів
Показник середньоквадратичної похибки. В окремому випадку квадратичної функції втратсередній ризик приводить до середньоквадратичної похибки оцінювання скалярного параметра
Величина цієї похибки і використовується як показник якості рішення.
Показник апостеріорної щільності ймовірності. Для завдання цього показника (критерію) якості використовують відповідну формулу Байєса: