становится ортонормированной.
Пусть теперь f – любой элемент унитарного пространства R, ae1, e2, ..., en,... – ортонормированная система этого пространства. Величина
носит название коэффициента Фурье, а ряд
носит название ряда Фурье. Ряд Фурье наилучшим образом аппроксимирует f(приближается к f). Это значит, если рассматривать норму разности элемента f и ряда Фурье
то наименьшее значение норма примет при
которое называется неравенством Бесселя.
Примеры ортонормированных систем:
1. Система гармонических функций, записанных в комплексном виде
образуют ортонормированную систему в
2. Функции
образуют для m = 1, 2, 3, ...ортонормированную систему, состоящую из неотрицательных функций на отрезке [0,1].
3. Ортонормированная система функций Уолша wal(m, x)
заданная на интервале широко используется при дискретной обработке сигналов. Аналитическое описание функций Уолша довольно сложно. Легко понять принцип построения этих функций из графиков4. Важный класс ортонормированных систем можно получить при помощи ортогонализации функций 1, t, t2, ..., tn, ... в унитарном пространстве
со скалярным произведениемгде р(t) – некоторая положительная, непрерывная на интервале [a, b] функция. Для отрезка [-1, 1] и p(t) = 1 получаем полиномы Лежандра; для отрезка [-1, 1] и
- полиномы Чебышева первого рода; для полупрямой [0, ¥] и p(t) = е-t – полином Лягерра; для всей оси (-¥, ¥) и p(t) = е-t – полином Эрмита и т.д.Определение. Линейное метрическое пространство R называется полным, если оно содержит все предельные точки. Это значит, если r(хm+p, xn) ® 0 при m®¥ (xmÎR), "p =
, то $ хо ÎR такое, что limr(xm, xo) = 0.m®¥
Определение. Полное метрическое пространство называется пространством Банаха.
Полное унитарное пространство носит название пространства Гильберта.
Примеры.
1. Пространство L(a, b) – абсолютно интегрируемых на интервале (а, b) функций (x(t) ÎL(a, b), если
с метрикойявляется пространством Банаха.
3. Пространство L2(a, b), со скалярным произведением
является пространством Гильберта.