Значения поверхностного натяжения для жидких материалов определить экспериментально легко (представлены в справочниках), а для твердых — трудно.
Для большинства расчетов уSдля твердых тел принимаются на 5—8% больше этих же значений для жидких.
Идеальная (чистая) поверхность встречается редко. На практике приходится иметь дело с реальной поверхностью, т. е. поверхностью твердого тела, покрытой пленкой (толщиной 100—1000 нм) оксидов, гидратов, жиров и других веществ, которая к тому же не является атомно гладкой, В микроэлектронных изделиях большинство эксплуатационных свойств реализуется в приповерхностных слоях. Состояние поверхности влияет на электрофизические параметры приповерхностных слоев, вызывая адсорбцию заряженных частиц, появление рекомбинационных центров и других дефектов. Часто надежная работа радиоэлектронного устройства зависит от того, насколько хорошо подготовлена (обработана) и насколько надежно защищена его поверхность от вредных внешних воздействий. Для того чтобы понять физико-химические свойства поверхности, рассмотрим основные термодинамические и физические аспекты поверхностных явлений.
Поверхностное натяжение уS влияет на значение суммарной свободной энергии системы ДG только в том случае, когда оно соизмеримо с другими составляющими уравнения. При термодинамическом анализе поверхностных явлений определяются значимость уSв уравнении, возможности еенахождения, зависимость уSот таких параметров состояния, как температура, давление, концентрация компонентов системы, или от технологических факторов (чистоты, шероховатости поверхности и т. п.).
При повышении температуры происходит расширение тел и ослабление сил взаимного притяжения как в толще, так и на поверхности материала. Это приводит к тому, что поверхностное натяжение уменьшается с увеличением температуры материала. Зависимость поверхностного натяжения от температуры в большинстве случаев линейна.
В этих условиях поверхности раздела фаз не существует. В конденсированном состоянии (жидком или твердом) вещество не может находиться выше температуры Ткр. Такую температуру называют критической. На практике часто пользуются этим параметром, например, для полного удаления влаги из какого-либо технологического агрегата или с поверхности изделий производят их термическую обработку при температуре, близкой к критической температуре воды (475°С). В большинстве случаев достаточной является температура 300°С, особенно если сушка проводится в вакууме.
При постоянных температуре и давлении самопроизвольно протекают такие процессы, для которых характерно уменьшение свободной энергии, т. е. ДGS<0 или ДG3= уS ДSп<0. Если уS =const, то ДSп<0, т. е. протекающие процессы сопровождаются уменьшением площади поверхности. Таким образом, система самопроизвольно стремится к уменьшению поверхности раздела фаз.
Для жидкости поверхностное натяжение уS минимально при шарообразной форме. Для кристаллических тел наименьшее значение ДGS достигается при определенных соотношениях размеров граней кристалла, поскольку поверхностные энергии различных граней различны. Конфигурация кристалла, которой соответствует минимум ДGS, наиболее устойчива (принцип Гиббса — Кюри).
Важным выводом термодинамического анализа поверхностных процессов является то, что при увеличении площади поверхности, т. е. при повышении дисперсности (степени измельчения) вещества, его пористости, разрыхленное™ внутренней структуры и степени ее упорядоченности, изменяются физико-химические и эксплуатационные свойства материалов, а следовательно, и изделий, изготовленных из них. Например, у мелкодисперсных материалов увеличивается способность к переходу из одной фазы в другую при любом процессе (увеличиваются летучесть, растворимость, химическая активность и т. п.). Материал более активен в аморфном состоянии, чем в кристаллическом; в поликристаллическом, чем в монокристаллическом. На практике это свойство материалов используется широко, например, для эмульсий галогенидов серебра, применяемых в фотолитографии, степень дисперсности определяет светочувствительность материала; при создании изделий из композиционных паст энергия сцепления частиц в значительной мере зависит от степени их дисперсности и т. п.
При взаимодействии поверхностей твердой и жидкой фаз наблюдается явление, называемое смачиванием. Степень смачивания характеризуется видом и степенью искривления поверхности жидкости в месте соприкосновения трех фаз: твердой, жидкой, паровой (газообразной). Такое искривление называют мениском.
Степень смачивания определяет форму капли жидкости на стенки сосуда твердой поверхности. Мерой смачивания обычно служит контактный угол (угол смачивания) ср между смачиваемой поверхностью и поверхностью жидкости по периметру смачивания (рис. 4.1, а).
Если соприкасаются две поверхности твердого тела, т. е. судить о смачивании невозможно, то вводится аналогичное смачиванию понятие адгезии как явления и меры взаимодействия двух (более) поверхностей твердых тел. Адгезия измеряется силой отрыва одной поверхности от другой.
Смачивание, адгезия и капиллярные явления играют существенную роль при промывке и сушке изделий и полуфабрикатов (замедляют движение жидкостей и газов из пор и трещин), а также в пропитке, осаждении слоев, лужении, пайке и сварке изделий. Кроме того, эти явления могут влиять на эксплуатационную надежность таких многослойных тонкопленочных изделий, как интегральные микроэлектронные устройства.
2. Адсорбционные процессы на поверхности твердых тел
Если энергия взаимодействия поверхностей двух конденсированных фаз (например, жидкой и твердой) определяется силами адгезии веществ, то энергия взаимодействия поверхности тела с газовой фазой или разбавленным раствором вызывает концентрирование одного из веществ (компонентов) на поверхности и в приповерхностном слое. Такое явление называется адсорбцией. Вещество, на поверхности которого происходит адсорбция, называется адсорбентом, а адсорбируемое вещество — адсорбагом. Процесс отделения от поверхности ранее адсорбированного вещества называют десорбцией.
Различают два вида адсорбции: физическую и химическую (хемосорбцию). При физической адсорбции энергия взаимодействия между адсорбатом и поверхностью не столь значительна, чтобы изменить физико-химическую природу адсорбата, а следовательно, и его свойства. При хемосорбции образуется химическая связь между поверхностью и адсорбируемым веществом.
Физическая адсорбция протекает быстро, особенно при понижении температуры поверхности. Хемосорбция при низких температурах протекает медленно, но при повышении температуры ее скорость быстро растет подобно скорости химических реакций. Энергия физической адсорбции соизмерима с теплотой конденсации (испарения). Для органических растворителей она составляет 8— 15 кДж/моль, для металлов —10—40 кДж/моль. Энергия хемосорбции сравнима с теплотой химических реакций (50— 400 кДж/моль).
Количественную характеристику адсорбции можно получить из уравнения
где GG— свободная энергия Гиббса; S — энтропия системы; k— число компонентов системы; мi— химический потенциал i-ro компонента; Сi — концентрация i-ro компонента.
При Т = const, p = const в условиях равновесия (dGg = 0)
Адгезия различных пленок к подложкам позволяет обеспечивать получение качественных и надежных функциональных устройств, пассивирующих слоев и декоративных покрытий РЭА. Поэтому необходимо проанализировать факторы, стимулирующие и подавляющие адгезию. Решать эту проблему без учета природы конкретных материалов подложки и пленки не представляется возможным, так как характер взаимодействия адгезируемых материалов зависит не только от параметров состояния (температуры, состава, давления), но и от природы взаимодействующих веществ.
Пограничные слои пленки и подложки могут образовывать и химические связи, которые практически не поддаются расчету, а могут лишь качественно оцениваться исходя из химических свойств взаимодействующих поверхностей. Ориентиром в таких оценках может служить сродство осаждаемого (наносимого) на поверхность подложки вещества пленки к веществу подложки или какому-либо компоненту этого вещества. Например, при осаждении металлической пленки на поверхность подложки, изготовленной из оксидов тех или иных элементов (Si02, A1203, Zr02) или их композиций, важным фактором для адгезии является сродство осаждаемого металла к кислороду и возможность образования химических (типа химических) связей Me—О. Очевидно, что адгезия пленки при возникновении химической связи на границе раздела значительно больше, чем при чисто физической связи. Если при физической адгезии энергия отрыва пленки от подложки приблизительно равна теплоте сублимации, то при химической адгезии (хемоадгезии) эта энергия должна быть соизмерима с энергией диссоциации связи Me—О, которая, как правило, на порядок больше теплоты сублимации (сотни, десятки кДж/моль). Таким образом, при прочих равных условиях металл, имеющий большее сродство к кислороду, имеет лучшую адгезию к материалу из оксидов, причем повышение температуры в этом случае увеличивает адгезию в отличие от физической адгезии, при которой повышение температуры приводит к уменьшению силы адгезии.