Сила адгезии по всей поверхности подложки одинакова, если поверхность однородна, т. е. ее рельеф и чистота постоянны. На молекулярном (атомном) уровне практически любая поверхность неоднородна. На практике используют различные эмпирические критерии однородности и чистоты поверхности, пригодные для оценки технологии ее обработки.
Шероховатость (степень неоднородности рельефа) поверхности влияет на силу адгезии. Можно привести множество примеров адгезии частиц пленки на неоднородных поверхностях (рис. 4.8, а, б) и только один пример на идеально гладкой поверхности (рис.4.8, в). Поэтому понятно стремление технологов добиться как можно более гладких поверхностей для обеспечения максимальной адгезии.
Такой же вывод можно сделать и относительно чистоты поверхности. Из анализа рис. 4.8 можно понять, как могут зарождаться и исчезать поры, трещины и другие «слабые» места на границе раздела пленок и подложек. При малых размерах частицы пленки могут «грунтовать» поверхность, обеспечивая хорошую адгезию последующих слоев. Для получения хорошей адгезии слабо адгезирующего материала промежуточные слои формируют из веществ, имеющих хорошую адгезию к подложке и материалу пленки. Такие вещества, обеспечивающие высокую адгезию, называют адгезивами.
Для оценки шероховатости поверхности используют классы чистоты (обработки) поверхности. В табл. 4.1 приведены параметры, характеризующие шероховатость поверхности (см. рис. 4.8, а).
Физическая (пыль, вода, жиры) и химическая (оксиды, карбиды, нитриды) чистота поверхности могут влиять на адгезию вещества как в положительную (увеличения), так и отрицательную (уменьшения) сторону в зависимости от физико-химических свойств загрязняющего материала. В большинстве случаев пыль, вода и жиры, создавая неровности и поры на границе раздела пленки и подложки, снижают адгезию пленки. Если осаждаемая пленка лучше адгезирует с оксидами (нитридами, карбидами и т. п.), то такие загрязнения способствуют увеличению адгезии. Загрязнения поверхности могут рассматриваться с физико-химической точки зрения как источник промежуточных сил, по-разному влияющих на адгезию пленок и покрытий. В любом случае физико-химическая неоднородность поверхности приводит к нестабильным значениям адгезии.
4. Процессы очистки, промывки и пропитки поверхности
При нанесении различных жидких материалов на поверхность твердых тел происходит их смачивание, определяемое силами сцепления жидкости и поверхности твердого тела. Хорошее смачивание необходимо в процессах, в которых осуществляется взаимодействие жидкой среды с поверхностью (нанесение фотоэмульсий, жидких красителей, травление, лужение, панка, очистка химическими растворителями, пропитка и т. п.).
Стабильные результаты при смачивании поверхности жидкостью можно получить только при наличии достаточно чистой поверхности твердого тела. Поэтому тщательная очистка поверхности жидкими растворами характерна для ТП, связанных с нанесением пленок или паст (нанесение покрытий, пропитка, осаждение пленок и т. п.).
Основные виды загрязнения поверхности (жиры, пыль, припои, оксиды, соли) можно удалить с помощью жидких растворителей. Для интенсификации процессов растворения применяются гидродинамическая (отмывка щетками и сильной струей растворителя) и гидроакустическая (отмывка с помощью акустических волн, распространяющихся в растворителе) обработки.
По своей физико-химической природе растворители делятся на неорганические (вода, соли, кислоты, щелочи), органические (ацетон, четыреххлористый углерод, бензин и др.), смешанные (спиртовые растворы, водные растворы органических кислот), а также расплавы металлов и солей (ртуть, олово, галлий, припои и др.). Неорганические растворители, как правило, гидрофильны. По своей природе они относятся к классу электролитов, хорошо растворяют оксиды, соли и другие полярные соединения.
Органические растворители являются гидрофобными и относятся к классу неэлектролитов. Они хорошо растворяют примеси органического происхождения (неполярные или слабополярные вещества), например жиры, минеральные масла.
Смешанные растворители состоят из смесей растворителей обоих типов.
Расплавы металлов и солей используются как растворители при повышенных температурах ТП.
Пока еще не известен растворитель, который мог бы очищать поверхность от всех загрязнений. Поэтому используются многостадийные методы очистки поверхностей в растворах разного типа. Очистка растворителями интенсифицируется с помощью нагрева или применения ультразвука. При нагревании снижаются вязкость и поверхностное натяжение растворителя, что облегчает проникновение его в зазоры и поры для удаления загрязнений. Те же функции выполняет ультразвук частотой 40—700 кГц.
Перемешивание растворителя увеличивает массопередачу растворенного вещества от поверхности в глубь раствора, обеспечивая приток раствора, менее загрязненного примесью, к поверхности.
В табл. 4.2 приведены физико-химические свойства основных растворителей, используемых для очистки поверхностен изделий, а в табл. 4.3 дан перечень растворяемых в них загрязняющих веществ.
На обрабатываемых поверхностях деталей присутствуют жиры и минеральные масла, нерастворимые в воде. Удалить их с поверхности можно лишь органическими растворителями или щелочными растворами. Под действием щелочи жиры омыляются, образуя растворимые в воде соли жирных кислот (мыла) и глицерин, согласно взаимодействию стеарина с едким натром.
Для удаления загрязнений могут использоваться различные механические и гидродинамические приспособления: щетки, полотна, сильные водяные струи и т. п.
При подготовке поверхностей деталей или узлов к нанесению жидких эмульсий (смачивание), пропитке с целью герметизации и изоляции и т. п. необходимо обеспечить максимальную адгезию этих материалов с подложкой. Тщательная очистка поверхности недостаточна для обеспечения надежной адгезии. Следует повысить и физико-химическую активность поверхности, что достигается ее химическим травлением. Травитель должен очищать поверхность, удаляя с нее вредные для дальнейших ТП вещества.
Большинство изделий и деталей РЭА выполняется из различных веществ или материалов. Поэтому травильные растворы имеют селективный характер, т. е. способны растворить один материал, не затрагивая другие. Составы травителей подбираются экспериментально в зависимости от свойств поверхности, которые необходимо получить, заданной скорости травления, удобства работы с травителем и его хранения, токсичности, горючести, стоимости и т. п.
Хорошие адгезионные свойства поверхности позволяют обеспечить высокое качество ТП пропитки изделий РЭА. Целью пропитки как ТП производства РЭЛ является увеличение влаго- и термостойкости изделий, а также улучшение их механических и электрических свойств (ликвидация вибраций в катушках индуктивности и трансформаторах, снижение токов утечки, исключение явлений ионизации, улучшение теплоотвода и т. п.).
При пропитке пропитывающий материал должен проникнуть во все щели, вытесняя из них воздух, и хорошо смочить обрабатываемую поверхность. Это возможно только при достаточно высокой адгезии материала с поверхностью обрабатываемого изделия или детали, т. е. при малой вязкости пропитывающего материала; достаточно чистой поверхности обработки и удалении воздуха из щелей за счет разрежения.
Это обеспечивается выбором маловязких пропитывающих жидкостей и их нагреванием непосредственно перед пропиткой; тщательной очисткой и травлением поверхностей описанными методами; применением вакуумной пропитки или пропитки под давлением.
Пропитка, как и любое другое покрытие поверхностей, осуществляется в несколько стадий. При этом образуется многослойная покрывающая структура, предохраняющая поверхность от воздействия различных внешних факторов за счет несовпадения рельефа трещин и порв соприкасающихся слоях (рис. 4.11).
Хемоадгезия по аналогии с хемосорбцией повышает адгезию покрытия за счет образования химических связей, особенно сильно проявляющихся при наличии на поверхности и в покрытии гидроксильных или фенольных групп (рис. 4.12).
Часто для снижения вязкости пропитывающие термореактивные смолы разбавляют растворителями, которые затем удаляются при отверждении . Однако удаление растворителей при отверждении может привести к появлению новых пор и трещин. Кроме того, большинство растворителей являются химически активными веществами, способными растворять материалы конструктивных элементов изделия (эмали обмоточных проводов, пленки и т. п.). Поэтому с физико-химической и технологической точек зрения лучше подбирать такие составы для пропитки, которые можно использовать без растворителей, например на основе эпоксидных полиэфирных и полиуретановых смол.
Если требуется получить малую вязкость пропитывающего материала при низких температурах, следует использовать полиэфирные смолы. Достоинствами таких смол являются их доступность и низкая стоимость. Если необходима высокая эластичность пропитывающего материала после отверждения, то нужно применять полиуретановые смолы.
В пропитывающие составы обычно вводятся смесительные отвердители, ускоряющие процесс отверждения и упрочняющие эти составы. Кроме того, такие смеси могут использоваться для заливки изделий. В качестве отвердителей применяются полиангидриды типа полиазилена.