ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ РФ
ОРЛОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
ФАКУЛЬТЕТ ЭЛЕКТРОНИКИ И ПРИБОРОСТРОЕНИЯ
Кафедра: Проектирование и технология электронных и вычислительных систем
РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К КУРСОВОЙ РАБОТЕ
По дисциплине «Материаловедение и материалы ЭС»
Тема работы: «Технология изготовления плат толстопленочных ГИС»
Выполнил
Студент группы 31B Журавлев Е. Ю
Проверил
Преподаватель Косчинская Е. В
Орел, 2010г.
Введение
Под керамикой понимают большую группу диэлектриков с разнообразными свойствами, объединенных общностью технологического цикла.
Слово «керамика» произошло от греческого «керамос», что значит «горшечная глина». Раньше все материалы, содержащие глину, называли керамическими. В настоящее время под словом «керамика» понимают не только глиносодержащие, но и другие неорганические материалы, обладающие сходными свойствами. При изготовлении из них изделий требуется высокотемпературный обжиг.
1. Аналитический обзор
Для современной радиоэлектроники важное значение имеют керамические диэлектрики, которым присущи многие положительные свойства: высокая нагревостойкость, отсутствие у большинства материалов гигроскопичности, хорошие электрические характеристики при достаточной механической прочности, стабильность характеристик и надежность, стойкость к воздействию излучения высокой энергии, развитию плесени и поражению насекомыми. Сырье для производства основных радиокерамических, изделий доступно и дешево.
Преимуществом керамики является возможность получения заранее заданных характеристик путем изменения состава массы и технологии производства. Некоторые керамические диэлектрики благодаря определенным свойствам позволяют наиболее просто решать ряд задач новой техники. Это относится к сегнетокерамике, пьезокерамике и керамическим электретам.
При массовом производстве керамических изделий основные операции технологического процесса могут быть полностью автоматизированы. Существенным достоинством керамического производства является отсутствие ограничений на изготовление изделий необходимой формы и габаритов.
В общем случае керамический материал может состоять из нескольких фаз. Основными фазами являются кристаллическая (одна или несколько) и стекловидная. Кристаллическую фазу образуют различные химические соединения или твердые растворы этих соединений. Основные свойства керамики — диэлектрическая проницаемость, диэлектрические потери, температурный коэффициент линейного расширения, механическая прочность — во многом зависят от особенностей кристаллической фазы.
Стекловидная фаза представляет собой прослойки стекла, связывающие» кристаллическую фазу. Технологические свойства керамики температура спекания, степень пластичности керамической массы при формовании — определяются в основном количеством стекловидной
2. Разработка технологического маршрута
- Получение сырья
В качестве основных сырьевых материалов для изготовления дешевых керамических изделий электронной техники, к электрофизическим параметрам которых предъявляются невысокие требования, используются традиционные материалы (глина, полевой шпат, кремнезем, каолин и др ). К ним применяют упрощенные способы очистки для удаления загрязнений, попадающих в массу при технологической переработке При измельчении в массу попадают железистые примеси, которые удаляются последующей промывкой смеси раствором соляной кислоты. С той же целью часто применяются электромагнитная сепарация, водная промывка, гидравлическая сепарация тяжелыми жидкостями и флотационное обогащение
Основные исходные компоненты, предназначенные для изготовления ответственных изделий электронной техники, представляют собой химические реактивы высокой чистоты Основные требования к сырьевым материалам — стабильность химического состава (т. е качественное и количественное постоянство максимально допустимых примесей) и стабильность физико-химического состояния. Последнее характеризует реакционную способность этих материалов и качественно определяется состоянием поверхности частиц, дефектностью кристаллической решетки, процентным соотношением полиморфных модификаций. От этих факторов существенно зависит скорость синтеза керамики В большинстве случаев отмеченные свойства поставляемых химических продуктов не отвечают требованиям соответствующего керамического производства; обычно они вообще не регламентируются действующими стандартами и техническими условиями и, следовательно, могут быть непостоянными. Поэтому в технологию керамического производства в этих случаях необходимо включать процессы предварительной термообработки исходных материалов (прокаливание до определенных температур, иногда плавление) и эффективные методы весьма тонкого измельчения, часто сопровождаемого изменением строения частиц диспергируемого материала.
Для получения высокоплотной керамики необходимо, чтобы исходные компоненты имели достаточно малый размер частиц, не более нескольких микрометров. Поэтому исходные сырьевые материалы для керамического производства, имеющие вид кусков разных размеров с различными физическими свойствами, подвергаются операции измельчения до получения необходимого гранулометрического состава. Сверхтонкая дисперсность измельченного материала (до размеров частиц 0,5—5 мкм) обеспечивает интенсивную активацию порошкообразных материалов, что приводит к интенсификации процессов твердофазного спекания керамики за счет протекания механохимических реакций. При проведении процессов сверхтонкого диспергирования необходимо учитывать, что механическое воздействие на материал может вызвать ряд следующих физико-химических процессов: химическое разложение некоторых соединений (нитратов, галогенатов, оксалатов); диссоциацию карбонатов с выделением углекислоты, а в случае сложных карбонатов — их предварительное разложение на простые карбонаты; разрушение кристаллической решетки и амортизацию материала; протекание обменных реакций в ионных соединениях; синтез новых соединений; изменение физико-химических свойств соединений (термодинамических параметров, растворимости, гигроскопичности и др.). Протекание этих процессов обусловливается главным образом за счет тепловыделения в местах значительного механического воздействия, нарушения упорядоченности кристаллической решетки и влияния воды, адсорбированной частицами.
Гранулометрический состав сырьевых материалов влияет на физико-химические, механические и термические свойства керамических изделий, особенно когда их изготовляют из непластичных масс. Присутствие в шихте мелких фракций непластичных исходных материалов увеличивает контактную реакционную поверхность, что в процессе обжига повышает прочность и плотность изделий, но снижает их термостойкость. За счет повышения содержания крупных фракций структура изделия становится более рыхлой, увеличиваются пористость и термостойкость.
- Получение диэлектрических слитков
Изостатическое прессование
Этот метод основан на всестороннем обжатии засыпанного в эластичную форму пресс-порошка или предварительно оформленной каким-либо другим способом заготовки давлением жидкости или сжатого газа. Изостатическое прессование в резиновых формах путем приложения гидростатического давления жидкости называют гидростатическим прессованием. Этот способ позволяет получать наиболее плотные и однородные заготовки сложной конфигурации. В этом случае равномерные уплотняющие усилия и соответственно равноплотность всех участков прессуемого изделия обеспечиваются всесторонним приложением давления от нагнетаемой жидкости к прессуемому изделию через эластичную резиновую оболочку. При гидростатическом прессовании устраняются потери давления на трение о стенки формы, в результате чего изделия хорошо пропрессовываются и имеют меньшие внутренние напряжения, чем при изготовлении их другими способами. При этом важным условием получения высококачественных плотных заготовок является равномерная укладка гранул пресс-порошка (желательно изометрической конфигурации) в форме и полное удаление воздуха может производиться как предварительное до начала прессования, так и в процессе прессования, например вакуумированием. Гидростатическое прессование в резиновых формах производится для различных материалов в широком интервале давлений жидкости 10—103 МПа.
Особенности процесса гидростатического прессования рассмотрим на примере получения заготовок для высоковольтных конденсаторов (рис. 7.7).
В решетчатый или сетчатый каркас-ограничитель 3, служащий для крепления формы и придания ей жесткости во время засыпки пресс-порош ком, помещается резиновая форма 5. С помощью крепежного и уплотняющего устройства 6 она прижимается так, чтобы пространство в прессовочной камере вне формы было изолировано от атмосферы. Далее производится откачка воздуха из этого пространства, в результате чего резиновая форма прижимается к каркасу-ограничителю и принимает конфигурацию, соответствующую конфигурации заготовки с учетом коэффициента уплотнения пресс-порошка. После установления в форму сердечника 7, формирующего внутреннюю полость заготовки, производится засыпка пресс-порошка при одновременном воздействии на систему вертикально направленной вибрации. Форма закрывается крышкой 8 с уплотнением 6 и производится вакуумирование ее внутренней части с пресс-порошком. Далее на стадии прессования пространство вне формы отключают от вакуумной системы и его заполняют гидравлической жидкостью Жидкость, давя на форму со всех сторон, обжимает ее, прессуя заключенный в форме пресс-порошок при одновременном его вакуумировании.