Смекни!
smekni.com

Проектирование и технология радиоэлектронных средств (стр. 2 из 6)

3. Критерии оценки микроактюаторов

Для оценки качества микроактюаторов используются следующие показатели:

· Линейность определяет линейность выходного сигнала как функцию входного. Определяется как максимальная разница между опорной линейной линией и выходом актюатора.·Выражена как процент полного выхода.

· Точность - насколько точно и воспроизводимо выполнена искомая активация.

· Погрешность определяет разность между реальным перемещением и целевым.

· Для разрешения имеется три определения:

1. Наименьший обеспечиваемый шаг.

2. Наименьшее приращение входа, приводящее к обнаружению активации.

3. Наименьший определяемый шаг.

· Воспроизводимость - отклонение выходного сигнала по циклам работы

· Гистерезис - это разница между выходным сигналом актюатора Y, когда Y получают в двух противоположных направлениях.

· Пороговое значение - начиная с нулевого входного сигнала, наименьшее начальное приращение входа, которое приводит к обнаружению выходного сигнала актюатора.

· Холостой ход – “мертвый” ход после смены направления ("b").

· Шум - флуктуации (случайные изменения) в выходном сигнале с нулевым входом.

· Дрейф - изменение выходного сигнала актюатора (с постоянным входом) в зависимости от изменения времени, температуры и т.д.

· Амплитуда - полный рабочий диапазон выходного сигнала актюатора.

· Чувствительность - отношение изменения выходного сигнала актюатора ΔY к изменению приращения входного сигнала ΔX.

· Скорость - скорость, с которой изменяется выходной сигнал актюатора.

· Переходная характеристика - резкое изменение выходного сигнала актюатора в ответ на ступенчатый входной сигнал.

· Ранжирование - оценка для сопоставления разных методов активации: DS= -(dη/dV), где η - выход по энергии, V - объём.

4. Трение и износ

Правила пропорциональной миниатюризации приводят к факту, что на микроуровне поверхностные силы по сравнению с объёмными имеют большее значение. Из этого следует, что для микроактюаторов трение имеет очень большое значение. Кроме того, из-за своей маленькой массы микромеханические элементы обладают малой силой инерции, что ведёт к высоким динамическим характеристикам, и следовательно они часто работают с высокой рабочей частотой и скоростью.

С одной стороны трение ведёт к потерям, которое является причиной ухудшения функционирования элементов, с другой стороны трение приводит к износу, который негативно воздействует на функциональное поведение и ведёт к ускоренному старению и, в конечном счёте, поломке компонента. Трение является ключевым фактором, который определяет не только эффективность, но и долговечность. Однако трение не всегда сопровождается износом, возможно трение и без износа.

Трение - это явление, воздействующее на поверхностный слой материала, и практически не затрагивающее объёмные характеристики. Это результат взаимодействия контактных областей поверхностей. Важные факторы, влияющие на величину трения: состояние поверхности, поверхностная топология и взаимодействующие материалы. По сравнению с традиционным машиностроением в микросистемах появляется трение твердых тел (сухое трение). Для микромоторов сила поверхностного натяжения настолько велика, что существенно влияет на их функционирование. Поэтому в качестве подшипников скольжения используют подшипники сухого трения, которые, однако, могут быть снабжены молекулярными смазочными плёнками для уменьшения трения и износа. В этом случае характеристики смазки и контактной поверхности становятся главными факторами. Характеристики материалов для смазочных плёнок молекулярной толщины изменяются. Следует заметить, что на сегодняшний день ещё не существует общепринятых методов применения молекулярных плёнок толщиной в несколько нанометров. В этом случае шероховатость поверхности имеет более высокую важность, чем толщина используемой в микросистемах плёнки, которая лежит в пределах от нескольких десятков до нескольких сотен нанометров.

Классическая инженерная модель макроскопического трения имеет следующие существенные характеристики:

1. Сила трения зависит только от нормальной силы FN и всегда действует в направлении противоположном направлению движения.

2. Сила трения не зависит от величины поверхности соприкосновения.

3. Сила трения не зависит от скорости скольжения.

4. Сила трения покоя всегда больше силы трения движения.

5. Силы трения зависят только от двух материалов, которые скользят друг по другу.

Следующая формула, названая законом Кулона – Амонтона, выражает эти соотношения: F1=μFN, где F1и FN - это тангенциальная и нормальная составляющая силы и μ - кинетический коэффициент трения. Некоторые коэффициенты сухого трения скольжения μ для различных комбинаций материалов представлены в таблице.

материал μ материал μ
алюминий/алюминий 1,0-1,4 тефлон/сталь 0,04
никель/никель 0,53-0,8 Al2O3/Al2O3 0,4
сталь/сталь 0,42-0,57 кремний/Al2O3 0,18
алмаз/алмаз 0,1-0,15 сталь/сапфир 0,15
медь/медь 1,2-1,5 никель/вольфрам 0,3

Любая поверхность имеет неровности и поверхностную волнистость, что приводит к тому, что фактическая область контакта состоит из отдельных контактных точек. Точки контакта или неровности составляют только малую долю общей площади поверхности, зависящую от нагрузки.

Так как исключительно точки контакта вносят вклад в генерацию силы, напряжение в точках контакта соответственно высоко, и предел текучести материала σm может быть достигнут при относительно малых силах. В пределах контактных точек происходят эластичные и пластические деформации, посредством чего общая суммарная площадь контакта А становится прямо пропорциональной давлению и обратно пропорциональной пределу текучести, A=p/σm. В контактных областях силы междуатомного взаимодействия действуют между смежными участками вещества, которые противостоят касательному напряжению σs. В этом случае силы трения переносятся только в область контакта. Таким образом, сила трения становится пропорциональной фактической площади контакта, и коэффициент трения находится по формуле μ=σsm. Эта модель даёт возможность объяснить трение Кулона, так как трение становится пропорциональным нагрузке, и не зависит от кажущейся площади. Сумма точек области находящихся в реальном контакте возрастает с увеличением нагрузки, из-за вовлечения большей области в адгезионное взаимодействие деформацией. Модель также объясняет, почему различные поверхности материалов имеют различный коэффициент трения - атомные поверхности имеют разные межмолекулярные связи. Некоторые применения этой идеи могут подтвердить вывод о том, что грубые поверхности могут иметь меньшее трение, чем очень хорошо отполированные, поскольку большая часть поверхности находится в контакте. Главная роль смазки - держать поверхности раздельно.

Износ, который сопровождает трение, отчасти можно представить в виде следующей картины. Внутри точек контакта происходит сильная нагрузка на материал, которая приводит к пластическим деформациям с одной стороны и с другой стороны, из-за слипания точек контакта, к формированию трещин на поверхности контактирующего материала и в результате к необратимым изменениям. Для износа характерны следующие механизмы:

· Адгезия (слипание)

· Абразивный износ (стирание)

· Эрозия из-за разрыва оксидных покрытий

· Усталость.

Вследствие адгезии может осуществляться перенос вещества между точками контакта и происходить искажение кристаллической решетки. Силы адгезии увеличиваются для веществ, которые имеют большее взаимное адгезивное сходство или химическую растворимость, создавая больший износ при контакте похожих поверхностей, чем при разнородных. Идеальным для предотвращения трения является материал, который сопротивляется образованию химических связей со множеством других материалов. Эта химическая инертность найдена в некоторых материалах, таких как тефлон. На атомном уровне было определено, что сухое трение иногда меньше, чем жидкое, потому что жидкость предоставляет больший фактический контакт между поверхностью и жидкостью, что приводит к гораздо большему адгезионному трению. Текстурирование может быть прежде всего использовано для уменьшения стикции (слипания) и трения покоя, так как более нерегулярные поверхности имеют меньшую стикцию. Текстурирование также может оказывать некоторую помощь смазочному материалу.


5.Различные типы микроактюаторов

Преобразование энергии

Цель микроактивации - это получение силы, которая могла бы производить механическое перемещение. Следовательно, разные принципы получения активации могут быть оценены согласно их работоспособности, т.е. возможности использования механической энергии. По сравнению с электромагнитным преобразованием энергии, которое преобладает в традиционной инженерии двигательных механизмов, в микроактивации можно использовать множество разнообразных принципов, которые не имело смысла использовать по функциональным или по ценовым характеристикам в макротехнологии.