F2= Мнас×W×T×H2,
где H1и H2 напряжённость магнитного поля на верхней и нижней грани пластины (в текущей конфигурации H1 < H2). Величина H1и H2 линейно зависит от соответствующего расстояния до поверхности электромагнитного источника. Пластина вместе с пермаллоевым участком рассматривается как твёрдое тело так как она существенно толще консольной балки. Основываясь на этом предположении систему сил, упрощают, перемещая F1до совмещения с F2. Результатом является вращающий момент, действующий против часовой стрелки и сосредоточенная сила, воздействующая на нижнюю грань структурной пластины. Этот результат можно представить как:
Ммаг= F1×L×cosθ
F = F2 - F1
Вращающий момент всегда стремится уменьшить полную энергию в системе актюатора, выравниванием вектора намагниченности с силовыми линиями внешнего магнитного поля.
Фотография магнитного микроактюатора, полученная на сканирующем электронном микроскопе, представлена на рис. 5.
Рис. 5
Примером магнитного микроактюатора другой конструкции может служить линейный мотор, показанный на рис 6. Магнит, расположенный в канале, движется взад-вперёд при переключении тока в обмотках, то с одной, то с другой стороны канала.
Рис. 6
Общая проблема, связанная с магнитными актюаторами, заключается в том, что обмотки двумерны (трёхмерные обмотки очень тяжело изготовить на микроуровне). Вдобавок ограничен выбор магнитного материала - выбираются только те материалы, которые легко обработать на микроуровне, и получается, что не всегда материал магнита выбирается оптимально. Во многом из-за этого магнитные актюаторы потребляют большое количество энергии и рассеивают много тепла. Следует отметить, что для изготовления микроскопических компонентов (размером до нескольких миллиметров) электростатические устройства обычно выгоднее магнитных, однако при более больших размерах магнитные устройства превосходят электростатические.
В основе теории пьезоэлектрических актюаторовлежит прямой пьезоэлектрический эффект - появление электрических зарядов разного знака на противоположных гранях некоторых кристаллов при их механических деформациях: сжатии, растяжении и т.п и обратный пьезоэлектрический эффект - состоит в деформации этих же кристаллов под действием внешнего электрического поля. Основная формула для прямого эффекта:
[Формула 10 (Рис.1)],
для обратного:
[Формула 11 (Рис.1)],
где Di - вектор электрического смещения, Ej- напряжённость электрического поля, Ek- относительная деформация, σk- механическое напряжение. Основными параметрами являются: dik - пьезоэлектрические коэффициенты, Sik- коэффициенты упругой деформации, коэффициенты диэлектрической проницаемости Eik.
На рис. 7 показано два простых примера, демонстрирующих принцип действия пьезоэлектричекских актюаторов. На рис. 7-а слой пьезоэлектрика осаждён на балку. При приложении напряжения балка изгибается. Такой же принцип можно применить и с тонкой кремниевой мембраной (рис. 7-b). Если приложить напряжение, мембрана деформируется.
Рис. 7а
Рис. 7б
Наибольшую популярность имеют следующие конструкции пьезоэлектрических Микроактюаторов (Рис. 8).
Гидравлические микроактюаторы имеют значительный потенциал, так как они могут передавать довольно много энергии от внешнего источника по очень узким трубкам. Это факт можно использовать в таких местах как наконечник катетера, смонтированного микрохирургического инструмента.
Для производства микротурбин может использоваться LIGA технология (рис. 9). Эта микротурбина обеспечивает энергией режущий микроинструмент.
Рис. 9
К особенностям гидравлических микроактюаторов можно отнести то, что он имеет довольно большие размеры, высокий уровень выходных сил и может иметь крайне низкое трение.
Тепловые актюаторы используют как линейное или объёмное расширение жидкости или газа, так и деформацию формы вследствие биметаллического эффекта, которые имеют место благодаря изменению температуры. Рассмотрим биметаллический актюатор. На рис. 10 мы видим балку из одного материала (кремний), и слой из другого материала (алюминий). Коэффициент теплового расширения у них разный. При нагревании, один материал расширяется быстрее, чем другой, и балка изгибается. Нагревание можно производить, пропуская через это устройство электрический ток.
Рис. 10
Тепловые актюаторы могут создавать относительно большие силы, но нет конструкции которая бы позволяла это сделать с позиции эффективного использования энергии. Результат улучшается при увеличении разницы между коэффициентами теплового расширения и при большом изменении температуры, однако достигаемое КПД всё равно остаётся относительно маленьким. Газы и жидкости имеют намного больший коэффициент теплового расширения, чем твёрдые тела, и это можно использовать в термопневматических микроактюаторах. На рис. 11 показан резонатор, внутри которого находится жидкость, с тонкой мембраной в роли нижней стенки. Через нагревательный элемент (резистор) пропускается ток. Жидкость нагревается и начинает расширяться, деформируя мембрану.
Рис. 11
Преимущества тепловых микроактюаторов:
1. Простая конструкция, рабочими элементами являются резистор нагрева и для использования биметаллического эффекта плёночная структура.
2. Подходящий размер, лежащий в микродиапазоне.
3. В качестве активных элементов применимы почти любые материалы, которые кроме различных коэффициентов расширения должны обладать достаточной прочностью. Обычно в качестве нагревателя используются резисторы извилистой формы, которые можно легко изготовить с использованием тонко- или толстоплёночной технологии.
Недостатки:
1. В настоящее время нагревательный элемент потребляет очень много энергии для того, чтобы тепловой актюатор смог развить относительно большую силу, т.е. у тепловых актюаторов невысокий КПД.
2. Нагревательный элемент необходимо охлаждать, чтобы вернуть актюатор в исходное положение, а значит тепло должно быть рассеяно в окружающую среду. Это естественно занимает некоторое количество времени и ограничивает быстродействие.
Так как проектирование МЭМС почти на всех своих фазах автоматизировано, то сосредоточим своё внимание на методологиях, алгоритмах, методах описания и моделирования, используемых при автоматизированном проектировании. Всё вышеуказанное объединяется в ёмкое понятие CAE - Computer AidedEngineering. Специфические характеристики и различия между проектированием, производством и применением микросистем по сравнению с традиционными (макро) реализациями вытекают из их размеров.
Микросистемная технология непригодна для производства опытных образцов. Если схема производства для массового производства по групповой технологии нарушается, то это влечёт за собой дополнительные расходы. Поэтому производство опытного образца следует избегать настолько, насколько это возможно. Кроме высокой стоимости производства опытного образца для выполнения производственного цикла требуется очень большое количество времени. В зависимости от сложности, цикл занимает несколько дней, недель или даже полгода. За то же самое время огромное количество вариантов конструкции может быть проверено при помощи моделирования.
Проектирование включает в себя высокую ценовую ответственность за каждый следующий шаг в жизненном цикле изделия. В типичном цикле изделия:
· Планирование проекта;
· Проектирование;
· Производство;
· Сбыт;
· Сервисное обслуживание;
· Утилизация, проектирование существенно влияет на стоимость следующих шагов, хотя прямые издержки на проектирование относительно малы. Обычно издержки на проектирование это 10 % от общей стоимости, хотя оно несёт ответственность за 70-80% общей стоимости.
В отличие от традиционных систем, возможность ремонта микросистем и особенно интегральных схем очень ограничена. Таким образом, главная цель при разработке состоит в том, чтобы получить полностью функционирующую систему в первой же реализации. Хотя типичная интенсивность отказов относительно высока (около 10%), контролируемость системы также является важной задачей при проектировании.
На сегодняшний день микросистемы состоят из отдельных компонентов, таких как сенсоры и актюаторы, которые интегрированы и упакованы вместе с управляющей и вычислительной электроникой. МЭМС отличаются разнообразием применений. Для проектирования, таким образом, возникает вопрос, в какой степени отдельные этапы проектирования могут быть стандартизированы и автоматизированы. Не все шаги могут быть автоматизированы одинаково. В особенности концептуальное проектирование и разработка принципов действия, которые основаны на творческой способности разработчика и, следовательно, не могут быть стандартизированы. А творческую способность можно только в небольшой степени поддержать средой проектирования.