При создании микросистем, фактически, выделяют две группы материалов:
1. Конструкционные (стекло, монокристаллический, поликристаллический, пористый кремний, диоксид и нитрид кремния, полиимид, вольфрам, никель, медь, золото, алмазо-подобный углерод), использующиеся для формирования:
· несущих конструкций;
· токоразводки;
· смазки.
2. "Активные умные" (никель/титан, пермаллой, кварц, окись цинка, пьезокерамика, материалы группы A3B5, А4В6), выполняющие за счет электростатических, электромеханических, пьезоэлектрических, магнитных, оптических явлений и эффекта памяти формы функции:
· источников движения;
· механизмов передачи движения;
· сенсорных и активирующих сред.
При создании микросистем различного функционального назначения на основе композиций разнородных материалов должны учитываться следующие параметры:
· кристаллохимическая совместимость;
· термомеханическая совместимость;
· тепловая стойкость (допустимая тепловая нагрузка, учитывающая температуру Дебая, точку Кюри, а для полупроводников и температуру перехода в состояние, когда концентрация собственных носителей заряда близка к примесной; способность вещества отдавать энергию в окружающую среду за счет теплопроводности, а при высоких температурах и за счет теплоизлучения);
· электрическая стойкость;
· механическая стойкость;
· механическая усталость.
Мировой опыт изготовления MEMSоснован на широком использовании кремния – дешевого и доступного материала. Однако технологий кремниевой микромеханики и обработки информации на кремнии (КМОП-схемы), недостаточно для успешного развития МЭМС. Поэтому большое значение имеют системы, в которых наряду с кремнием и другими полупроводниковыми материалами используются полимеры, керамика, металлы.
В классической микроэлектромеханике, ориентированной на базовые кремниевых микротехнологий в настоящее время господствует структура "кремний на диоксиде кремния". Учитывая тот факт, что микросистемы представляют собой сложные гетерогенные композиции, требующие сочетания совокупности разнородных материалов, и с учетом возможных особенностей их функционирования (высокие температуры, агрессивные среды, радиация), несомненный интерес в качестве базовой материаловедческой среды представляет композиция "карбид кремния на нитриде алюминия". Данная композиция сочетает в себе два широкозонных материала, один из которых – нитрид алюминия – является ярко выраженным диэлектриком (6,2 эВ) и обладает хорошими пьезоэлектрическими свойствами, а другой – карбид кремния (3,0 эВ) – широкозонный полупроводник. Оба материала оптически активны, в том числе в ультрафиолетовой области спектра, имеют высокую теплопроводность и температуру Дебая, характеризующую стойкость материала к внешним воздействиям (термическим, химическим, радиационным).
микроактюатор пьезоэлектрический гидравлический микросистема
Для изготовления микросистем главным образом используется групповая технология. При использовании подобной технологии одновременно обрабатывается большое количество элементов, при чём ручное вмешательство либо вообще не требуется, либо оно незначительно. Например, осаждение плёнок, оптическая литография, гальваника или травление. Многие из этих технологий были развиты в полупроводниковой технологии.
Так как микросистемы имеют крошечные размеры, издержки на материалы малы, а это означает, что производственные затраты низкие, несмотря на то, что накладываются особые требования на необходимую чистоту материалов. Стоимость заводов по производству высока. Производственное оборудование требует очень высокой точности (чистое помещение, покрытие…). Кроме того, высоких издержек требуют обслуживание и контроль (например, управление производственным процессом, контроль над нанесением покрытия).
В настоящее время существует несколько базовых технологий производства МЭМС, составной частью которых, в том числе, являются микроактюаторы.
Под кремниевой объёмной микрообработкой понимают технологию глубинного объёмного травления, при чём травление может быть как жидкое химическое анизотропное, так и плазменное.
Сухое травление.
Сухое травление - это метод силиктивного удаления не маскированных участков поверхности. Особенности процесса заключаются в том, что этот процесс можно комбинировать с технологией тонких плёнок и с технологией КМОП. Также посредством физико-химического травления контролируется профиль травления.
Жидкое химическое анизотропное травление
В этом процессе используется то, что разные кристаллографические направления кристалла травятся с разной скоростью (остаётся поверхность с ориентацией 111).
Подробно этапы жидкого химического анизотропного травления представлены на рис. 12
Рис. 12
1. (100 – подложка)
2. p + легирование для получения слоя остановки травителя
3. осаждение эпитаксиального слоя
4. окисление
5. литография и травление SiO2
6. анизотропное травление
Главной особенностью этой технологии является то, что она совместима с полупроводниковой технологией, для микрообработки используется КМОП технология.
Технология разработана в Германии примерно 30 лет назад. Аббревиатура означает - рентгенолитография, гальваника и формовка. Сущность процесса заключается в использовании рентгеновского излучения от синхротрона для получения глубоких, с отвесными стенками топологических картин в полимерном материале. Излучение синхротрона имеет сверхмалый угол расходимости пучка. Источником излучения являются высокоэнергетические электроны (энергия Е>1ГэВ) движущиеся с релятивистскими скоростями. Глубина проникновения излучения достигает единиц миллиметров. Это обуславливает высокую эффективность экспонирования при малых временных затратах.
Аббревиатура означает - ультрафиолетовая литография, гальваника и формовка. Из особенностей этого процесса можно отметить, что можно управлять шириной профиля и то, что технология совместима с технологией тонких плёнок.