Смекни!
smekni.com

Проектування високошвидкісної лінії внутрішньозонового зв'язку Одеської області (стр. 2 из 9)

- середній річний приріст населення в даній місцевості, % (приймається 2-3)%);

t - період, визначаємий як різниця між призначеним роком перспективного

проектування і роком проведення перепису населення, рік. Рік перспективного проектування приймається на 5-10 років вперед у порівнянні з поточним часом. Якщо в проекті прийняти 5 років вперед, то

(1.2)

де tn - рік складання проекту;

tо - рік, до якого відносяться дані Но.

У перспективі кількість абонентів, що обслуговуються тою чи іншою (кінцевою АМТС, визначаються в залежності від чисельності населення, що Мешкає в зоні обслуговування. 1 Приймаючи середній коефіцієнт оснащування вселення телефонними апаратами рівним 0.3, кількість абонентів у зоні АМТС

(1.3)

Використовуючи формули (1.1), (1.2) і (1.3) розрахуємо чисельність населення у всіх обраних пунктах.

Взаємозв'язок між обраними кінцевими і проміжними пунктами визначається на основі статистичних даних, отриманих підприємствами зв'язку за попередні проектуванню роки. і фактично ці взаємозв'язки виражають через коефіцієнт тяжіння КТ, що, як показують дослідження, коливається в широких межах, від 0.1% до 12%. У проекті КТ = 5%, тобто КТ = 0,05.

Враховуючи це, а також ту обставину, що телефонні канали в міжміському в'язку мають переважаюче значення, попередньо необхідно визначити кількість телефонних каналів між обраними пунктами. Для розрахування кількості телефонних каналів і первинних цифрових потоків (ПЦП) можна скористатися наближеною формулою (1.4.).

/30 (1.4)

де К й β - постійні коефіцієнти, що відповідають фіксованій доступності і заданим утратам, звичайно втрати задаються рівними 5%, тоді ДО= 1,3; β= 5,6;

у - питоме навантаження, тобто середнє навантаження, створюване одним абонентом, у = 0,05 Эрл;

Ма і Мв - кількість абонентів, що обслуговуються кінцевими АМТС відповідно в пунктах А і Б.

Таким чином, можна розрахувати число каналів і ІІЦІІ для телефонного зв’язку між пунктами. І Іо кабельній лінії передачі організовують канали й інші види зв'язку, а також враховують і транзитні канали. Розрахунки числа каналів і GWG для телефонного зв’язку між пунктами приведемо в таблиці 1.2.

Таблиця 1.1 – Кількість населення з урахуванням середнього приросту


Таблиця 1.2. Первинні цифрові потоки ПЦП

Білявка Б. Дністровський Татарбунари Кілія Ізмаїл Рені Болград Арциз Тарутине Сарата Всього
Білявка - 5 5 2 1 4 6 4 2 4 33
Б. Дністовський - - 4 1 1 3 2 2 1 2 14
Татарбунари - - - 1 1 4 3 3 1 1 14
Кілія - - - - 1 3 2 4 1 1 12
Ізмаїл - - - - - 3 3 2 4 5 17
Рені - - - - - - 4 3 3 1 11
Болград - - - - - - - 4 1 2 7
Арциз - - - - - - - - 1 1 2
Тарутине - - - - - - - - - 1 1
Сарата - - - - - - - - - - -
Всього - 5 9 4 4 17 20 22 14 18 111
ПЦП ввода вивода 33 19 23 16 21 28 27 24 15 18 -

1.3 Вибір системи передач. Характеристика і технічні дані обраної системи передач

1.3.1 Вибір системи передач

Ґрунтуючись на розрахованій кількості каналів, обираємо апаратуру синхронної цифрової ієрархії STМ-1/4.

Мультиплексор SТМ-1/4 призначений для організації цифрового потоку зі швидкістю передачі 155(622)Мбіт/с. працюючий по одномодовому оптичному кабелю довжиною хвилі 1300нм. Для кільцевих структур побудови мережі використовується мультиплексор з функцією вставки/виділення (рис 1.6), призначений для забезпечення простого доступу до трібутарних потоків РDH і SDH


Рисунок 1.5 - Схема мультиплексора з функцією вставки/виділення

Основні технічні характеристики синхронного мультиплексора SМА-1 фірми «SIEMENS» приведені в таблиці 1.3.

Таблиця 1.3 - Основні технічні характеристики SMA-1 фірми «SIEMENS»

Найменування показників Одиниця виміру Мультиплексор 5М 1
1 2 3
1 Номінальна швидкість Мбіт/с 155,520
2 Напруга електроживлення В 40,5-75
3 Споживана потужність Вт 70-160
4 Швидкість вхідних потоків основний варіант на хвильовий опір 75 Ом, 120 Ом Мбит/с 2,048
5 Номінальна амплітуда імпульса:- симетричні з'єднувачі- коаксіальні з'єднувачі ВВ 3±10%2,37+10%
6 Послаблення дБ 6 при 1024Гц
7 Кількість інтерфейсів на модуль КІЛЬКІСТЬ 21
8.Загальне число потоків КІЛЬКІСТЬ 63
9.Лінійний код - HDB 3
10.Номінальна тривалість імпульсу НС 244
11 .Частота синхронізації кГц 2048
12.Точність установки частоти синхронізації не гірше од. 1
13. Діапазон довжини хвилі нм 1285 - 1330
14. Енергетичний потенціал на довжині хвилі 1300 нм дБ 36
15.Тип волокна оптичного кабелю - Одномодовий
Іб. Переключення на резервний модуль с 10
17. Переключення на резервну лінію мс 25

1.3.2 Характеристика транспортної системи

Досягнення сучасної техніки комутації і передачі привели до того, що зникла необхідність у створенні сучасної цифрової транспортної мережі чи системи. Транспортна система (ТС) -це інфраструктура, поєднуюча ресурси мережі, що виконують функції транспортування. При транспортуванні виконуються не тільки переміщення інформації, але й автоматизоване і програмне керування складними конфігураціями (кільцевими і розгалуженими), контроль, оперативне переключення та інші мережні функції. ТС є базою для всіх існуючих планованих служб, для інтелектуальних, персональних і інших перспективних мереж, у яких можуть використовуватися синхронний чи асинхронний способи переносу інформації.

Транспортна система СЦІ - органічна сполука інформаційної мережі і системи контролю і керування SDH. Навантаженням інформаційної мережі СЦІ можуть бути сигнали існуючих мереж ПЦІ, а також сигнали нових служб і мереж зв'язку. Аналогові сигнали попередньо перетворюються в цифрову форму за допомогою наявного на мережі устаткування.

В інформаційній мережі СЦІ чітко витримується розподіл по функціональних шарах. Мережа містить три топологічне незалежних шари (канали, тракти і середовище передачі), які підрозділяються на більш спеціалізовані шари. Кожен шар виконує визначені функції і має точки доступу. Вони оснащені власними засобами контролю і керування, що мінімізує зусилля при ліквідації аварій і знижує їхній вплив на інші шари. Функції шару залежать від фізичної реалізації нижнього обслуговуючого шару. Кожен шар може створюватися й удосконалюватися незалежно.

В інформаційній мережі використовуються принципи контейнерних перевезень. Завдяки цьому мережа SDН досягає універсальних можливостей транспортування різнорідних сигналів. У транспортній системі SDН переміщаються не самі сигнали навантаження, а нові цифрові структури віртуальні контейнери, у яких розміщаються сигнали навантаження, що підлягають транспортуванню. Мережні операції з контейнерами виконуються незалежно від змісту. Після доставки на місце і вивантаження сигнали навантаження знаходять вихідну форму. Тому транспортна система SDН є прозорою.

Створення мережних конфігурацій, контроль і керування окремими станціями і всією інформаційною мережею здійснюється програмне і дистанційно а допомогою системи обслуговування SDH.

У шарі середовища передачі самими великими структурами SDН є синхронні транспортні модулі (SТМ), що представляють собою формати лінійних сигналів. Для створення високошвидкісних лінійних сигналів використовується синхронне мультиплексування потоків інформації.

1.3.3 Структури мультиплексування SDH і РDH

Розглянемо групоутворення синхронних транспортних модулів (SТМ). Інформація, що надходить у мережу, узгоджується зі структурами, за допомогою яких підтримується з'єднання. У SDН ці структури утворюються в мережних шарах секцій і трактів і транспортують цифрові потоки, а також широкосмугову інформацію. У функції цих структур входять також компенсація можливих змін швидкості і фаз транспортуючих по мережі SDH цифрових потоків. Така компенсація забезпечує функціонування SDН як синхронної мережі, що допускає плезіохронний режим.

Синхронні мультиплексори фірми «SIEMENS» формують потоки синхронної цифрової ієрархії і плезіохронної цифрової ієрархії. На малюнку 1.7 показані організація і зв'язки структур мультиплексування ієрархій SDН і PDH.


Рисунок 1.6 - Структури мультиплексування SDН іPDH

Мультиплексування починається з формування контейнера. Вхідні потоки PDH упаковуються в контейнери SDН С-12, С-3 чи С-4 відповідно плезіохронному методу зрівняння швидкостей; кожна стандартна швидкість передачі інформації потоку PDH постійно призначаються контейнеру визначеного розміру. Шляхом вдавання до контейнерів заголовка тракту (POH) з контейнерів створюються віртуальні контейнери VС-12, VС-2, VС-3 чи VС-4. Тобто VС=РОH+C. Трактовий заголовок РОН створюється (ліквідується) у пунктах, у яких організується (розформовується) VС, і контролює тракт між цими пунктами. У функції РОН контроль якості тракту і передача аварійної та експлуатаційної інформації. РОН тракту вищого порядку містить так само інформацію про структуру інформаційного навантаження VС. Кожен віртуальний контейнер VС-12 чи VС-2 генерує, разом з відповідними покажчиками TU (покажчик даних), трібутарних одиницю TU-12 чи ТU-3. 'ІU забезпечує узгодження між мережними шарами трактів нижчого і вищого порядків і містить інформаційне навантаження і ТU покажчик, що показує відступ початку циклу навантаження від початку циклу VС вищого порядку.