После определения кода доверительности для каждого импульса одного ответа уточняется азимутальное положение цели. Для этого определяется угловая азимутальная поправка для каждого импульса ΔφЦи и по заданному алгоритму, учитывающему корреляцию азимутальных поправок, вычисляют усреднённое значение азимутальной поправки ΔφЦ для каждой группы ответных сигналов.
На следующем этапе обнаруживают и устраняют сигналы ложных целей, получивших название фантомов (Phantom). Фантомы появляются в тех случаях, когда в совокупности принятых ответных сигналов появляются пары каких-то импульсов, интервал между которыми соответствует интервалу между координатными импульсами F1 и F2, то есть 20,3 мкс.
Наиболее вероятными случаями возникновения фантомов являются:
– появление ложной цели при включении сигнала опознавание SPI (Special Position Indication), так как интервал между этим импульсом и информационным импульсом С2 составляет точно 20,3 мкс;
– одновременный приём ответов от нескольких целей, расположенных одна от одной на близких расстояниях, как по азимуту, так и по дальности, когда интервал 20,3 мкс может появиться между любыми импульсами ответных сигналов;
– приём нескольких ответных сигналов от одного ВС за счёт многопутного распространения радиоволн.
В качестве критериев обнаружения фантомов в этих случаях используют наличие или отсутствие сигнала опознавания SPI, принадлежность обрабатываемых импульсов к одному азимуту, время появления сигналов с одинаковой координатной и дополнительной информацией. В последнем случае за правильную отметку цели принимается та, которая на экране индикатора ближе всего расположена по отношению к радиолокационной позиции.
После устранения фантомов начинается сравнение ответов, полученных за несколько периодов запросов на протяжении всего времени облучения цели. Используемые алгоритмы характерны для вторичной обработки радиолокационной информации. Параметры алгоритмов адаптируются к условиям окружающей среды и помеховой ситуации. Заканчивается вторичная обработка формированием сообщения об отметке цели и передачей его пользователям.
Структурные схемы моноимпульсных вторичных радиолокаторов с фазовыми полуугловыми дискриминаторами, например, самых распространённых радиолокаторов типа RSM-970 или IRS-20MP/L, мало чем отличаются от рассмотренной выше. Основные отличия касаются функциональных схем приёмников и угловых дискриминаторов, а также некоторых особенностей технической реализации отдельных узлов приёмников, в основу построения которых положено требование стабилизации фазовых характеристик суммарного и разностного каналов.
Рассмотрим в качестве примера структурную и функциональную схемы приёмного модуля радиолокатора IRS-20MP/L.
Приёмный модуль состоит из четырёх основных частей (рис. 11):
– трёх фильтров предварительной селекции;
– одной ВЧ-платы с местным гетеродином;
– трёх ПЧ-плат с логарифмическими усилителями;
– полууглового фазового дискриминатора.
Фильтры предварительной селекции (преселекторы) представляют собой электромеханические фильтры, любой из которых выполнен на четырёх объёмных резонаторах. Все они настроены на частоту принимаемых сигналов 1090 МГц. На частоте передатчика 1030 МГц и зеркальной частоте 970 МГц внесённое фильтром затухание равно 70 дБ. Полоса пропускания фильтра на уровне – 3 дБ равна 20 МГц. Для суммарного и разностного каналов характеристики фильтров согласованы по фазе.
Высокочастотная часть приёмного модуля составлена из трёх идентичных каналов: всенаправленного, суммарного и разностного. Там же помещён местный гетеродин с частотой колебаний 1030 МГц. В состав любого из трёх каналов входит малошумящий СВЧ-усилитель, фильтр зеркальной частоты и смеситель. СВЧ-усилитель имеет коэффициент усиления 16 дБ при коэффициенте шума 3,1 дБ. Фильтр зеркальной частоты не пропускает частоты 970 МГц на смесители, выполненные по балансной схеме. На выходе этих смесителей после преобразования получается сигнал промежуточной частоты 60 МГц. Для согласования фаз ПЧ-сигналов на выходах смесителей суммарного и разностного каналов сигнал гетеродина подаётся на них с одного и того же отдельного выхода гетеродина через делитель Уилкинсона (Wilkinson divider).
Местный гетеродин выполнен с элементом стабилизации частоты ПАВ (поверхностные акустические волны). Предусмотрена электрическая подстройка частоты в пределах 300 МГц. Для возбуждения передатчика и технического обслуживания сделаны отдельные ВЧ-выходы.
Сигналы Ω, Σ и Δ на частоте 60 МГц поступают на предварительные широкополосные УПЧ с коэффициентом усиления 26 дБ. Фиксированные аттенюаторы выравнивают сигналы во всех трёх каналах. Полосовые фильтры суживают полосы частот каналов до 10 МГц, обеспечивая этим необходимую избирательность приёмников. Выполнены они как LC-фильтры с семью резонансными контурами. Фильтры суммарного и разностного каналов взаимно согласованы по фазе.
После фильтров ПЧ-сигналы поступают на управляемые аттенюаторы, на которые одновременно подаются управляющие сигналы системы ВАРУ (временное автоматическое регулирование усиления). Для компенсации нелинейных характеристик аттенюаторов напряжение ВАРУ предварительно корректируется линеаризаторами, обеспечивающими линейную зависимость между коэффициентами передачи аттенюаторов и управляющим напряжением ВАРУ. Для согласования законов изменения во времени коэффициентов усиления суммарного и разностного каналов аттенюаторы этих каналов управляются напряжением, вырабатываемым одним линеаризатором. Далее сигналы всех трёх каналов поступают на входы логарифмических УПЧ. Благодаря этим усилителям динамический диапазон амплитуд приёмников расширяется до 84 дБ. Используемый принцип построения таких усилителей описан в литературе.
С логарифмических УПЧ через два делителя сигналы суммарного и разностного каналов поступают на полуугловой фазовый дискриминатор, функциональная схема которого приведена на рис. 13. Дискриминатор состоит из блока объединения сигналов, блока ограничивающих усилителей и блока фазовых детекторов. В блоке объединения сигналов формируются три сигнала: суммарный Σ и два комплексных – Σ – jΔ и Δ – jΣ.
Формирование этих сигналов осуществляется с помощью делителей, фазовращателя ±90º и подстроечных фазовращателей Δψ, которые выравнивают фазы всех трёх образованных таким образом сигналов.
В блоке ограничивающих усилителей все сигналы приводятся к одному и тому же уровню, чтобы исходные сигналы ФД зависели бы лишь от фаз входных сигналов и не зависели бы от их амплитуд. Перед усилителями установлены согласующие устройства с 50-омным входным сопротивлением, а после них – буферные каскады, которые устраняют влияние входных цепей ФД на выходные цепи ограничивающих усилителей. Ограничивающие усилители выполнены на интегральных схемах с дифференциальными входами и двусторонними симметричными ограничителями синусоидальных сигналов. Все чётные гармоники в них будут подавлены.