Основне питання, яке виникає під час зміни масштабу зображення, полягає у визначенні умов, при яких така заміна не супроводжується втратою інформації. Втрати відсутні, якщо відновлено безперервний сигнал у проміжках між вузлами, в яких значення сигналу відомі. Інакше, задача полягає у двовимірній інтерполяції сигналу. Її вирішення випливає з аналізу спектральних властивостей безперервного і дискретного зображень.
Умовою точного відновлення зображення в проміжках між відліками служить використання всіх відліків дискретного зображення. Це не завжди зручно, часто потрібно відновлювати сигнал у локальній області, спираючись на невелику кількість наявних дискретних значень. Тоді можна застосовувати наближене відновлення за допомогою різних функцій, що інтерполюють. На практиці найчастіше зустрічаються декілька методів інтерполяції зображень.
Метод визначає, як обчислюється значення поточного пікселя в залежності від розміру околу під час масштабування:
– метод “найближчого сусіда”: вихідному пікселю привласнюється значення одного вихідного пікселя околу, без урахування значень сусідніх пікселів. Цей метод в основному використовується для перетворення індексованих зображень;
– білінійна інтерполяція: значення вихідного пікселя – це зважене усереднення найближчого 2´2 околу вихідного пікселя;
– бікубічна інтерполяція: значення вихідного пікселя – це зважене усереднення найближчого 4´4 околу вихідного пікселя.
Кількість пікселів в околі впливає на складність обчислень. Тому білінійна інтерполяція більш тривала, ніж метод “найближчого сусіда”; бікубічна – більш тривала, ніж білінійна. Однак бікубічна дає більш точний результат, тому під час вибору методу інтерполяції завжди потрібно шукати компроміс між часом обробки і якістю зображення.
Описані процедури використовуються для зображень у градаціях сірого. Для індексованих зображень використовують метод “найближчого сусіда”, а низькочастотна фільтрація не застосовується, тому що для даного типу зображень вона не ефективна.