Після перетворювачів високочастотні сигнали å+i∆ і å-i∆ надходять на змішувачі і далі у вигляді сигналів проміжної частоти, що зберігають усі фазові співвідношення високочастотних сигналів, підсилюються й обмежуються за амплітудою. Після обмеження всі сигнали, незалежно від того, на якій відстані від радіолокаційної позиції знаходиться ПС, матимуть однакову амплітуду, а інформація про те, наскільки напрямок на ПС відрізняється від напрямку осі ДН, утримуватиметься в межах кута б, оскільки згідно з векторними діаграмами, наведеними на рис. 5,
Сигнали å+i∆ і å− i∆, позначені після обмеження як r+ і r-, подаються на ФД, нормована характеристика якого описана функцією синуса різниці фаз сигналів, що надходять на його входи, тобто для аналізованого випадку
Напруга на виході ФД несе інформацію не тільки про кутове відношення цілі від напрямку осі антени jа, але і про знак цього відхилення. Дійсно, з векторних діаграм, поданих на рис. 6, при зміні фази різницевого сигналу D відносно сумарного сигналу S на 180°, вектори r+ і r –міняються місцями, кут між ними дорівнює -2a і напруга на виході ФД
| |
|
Якщо припустити, що сумарна і різницева ДН кутового пелeнгатора описуються, як і для випадку амплітудного дискримінатора, виразами (3) і (2), то згідно з виразом (4) пеленгаційна характеристика вторинного моноімпульсного радіолокатора, що використовує сумарно-різницевий амплітудний пеленгатор і фазовий кутовий дискримінатор, описуватиметься виразом
Відповідні характеристики наведені на рис. 7. Вони подані для випадку, коли довжина хвилі l = 27,5 см, розкриви антенних ґраток пеленгатора дорівнюють 10; 8 або 5 м, а ДН антени відповідають виразам (4) і (3).
Графіки, наведені на рис. 7, і вираз (3) підтверджують основний недолік фазового кутового дискримінатора – малі межі робочого сектора пеленгаційної характеристики.
Дійсно, згідно з виразом (3) межі однозначного визначення UВИХ обмежуються значеннями аргументу синусу ±90°, тобто
фазовий пеленгація кутовий дискримінатор
|
Цю умову задовольняє граничний випадок, коли D/S=1, тобто робочий сектор пеленгаційної характеристики принципово не може виходити за межі кутів Dj°Ц, які відповідають точкам перетинання сумарної і різницевої ДН антени (рис. 5, точки а і б). Оскільки крутизна пеленгаційної характеристики поблизу цих точок низька, то реальний робочий сектор характеристики буде ще меншим. Згідно з виразом (3) межа робочого сектора визначатиметься наближеним виразом
де розкрив антени l вимірюється у метрах, а Dj°гран – у градусах.
3. Фазовий напівкутовий дискримінатор
Як уже наводилося вище, основним недоліком фазового кутового дискримінатора, функціональна схема якого наведена на рис. 4, є мала межа однозначного визначення кутового положення цілі. Однозначність зберігається в межах, коли кут 2a між векторами r+ і r– лежить у діапазоні ±90°, тобто коли кут a лежить у межах ±45°.
Робочий сектор, однозначно визначений коригувальною поправкою Djц, в цьому випадку визначатиметься областю, де співвідношення прийнятих сигналів D/У лежить у межах від нуля до одиниці, тобто до точок перетинання сумарної і різницевої ДН антени.
Для усунення цього недоліку використовують метод, суть якого полягає в тому, що сигнали r+ і r– порівнюються за фазою не між собою, а із сигналом сумарної ДН å у двох окремих ФД. Пелeнгаційна характеристика в цьому випадку утвориться додаванням результатів окремого порівняння сигналів, фазовий кут між якими дорівнює не 2a, а a. Для кожного з ФД рівняння (3) прийме вигляд
із чого витікає, що відношення сигналів D і å для однозначного визначення значення U лежатиме в межах від нуля до нескінченості. Робочий сектор пеленгаційної характеристики значно збільшується, а його межі фактично визначатимуться шириною ДН сумарного променя антени.
Кутовий дискримінатор, в основу роботи якого покладений цей принцип, одержав назву сумарно-різницевого напівкутового фазового дискримінатора або, просто, напівкутового фазового дискримінатора. На рис. 8 показана спрощена функціональна схема такого дискримінатора, а на рис. 9 і 10 наведені векторні діаграми сигналів, що ілюструють принцип роботи цієї схеми.
На вхід схеми надходять сигнали сумарного і різницевого каналів амплітудного пеленгатора (точки 1 і 2 на функціональній схемі) і відповідні сигнали на векторних діаграмах. Перетворювач П, виконаний на пасивному елементі у вигляді кільцевого моста або хвилеводного трійника, утворює на своїх двох виходах сумарні сигнали +iД і Д+iУ із поворотом фази одного з вхідних сигналів У або Д на +90° (точки 3 і 4 на функціональній схемі). Сигнали У і Д попередньо фазовані для одного з напрямків відхилення цілі від положення осі антени (рис. 10).
Для випадку відхилення цілі від напрямку осі антени в протилежну сторону, різниця фаз цих сигналів, як очевидно з рис. 9, змінюється на 180˚ (рис. 9, вектори 1 і 2). Після перетворення високочастотних сигналів у проміжну частоту, їхнього підсилення і «м’якого» обмеження в логарифмічних підсилювачах проміжної частоти (ППЧ-ЛОГ) сигнали надходять до фазових детекторів ФД-1 і ФД – Опорною напругою для цих ФД служить сумарний сигнал У, який отримав перед тим такі самі перетворення, що і сигнали У+iД і Д+iУ, і сумарний сигнал iУ, зсунутий попередньо за фазою на +90°.
В схемі використані так називані «косинусні» ФД, у яких вихідна напруга визначається не синусною, а косинусною залежністю від фазового кута між векторами сигналів вхідної й опорної напруг. Ці детектори схемно відрізняються від «синусних» ФД тільки тим, що один із вхідних сигналів попередньо повернений за фазою на 90°.
Згідно з векторними діаграмами, наведеними на рис. 10,
Для векторних діаграм, наведених на рис. 10, b=90°+a.
Отже,
Тоді
З цих виразів витікає, що знак пеленгаційної функції міститься у самій функції і вживати спеціальні заходи для визначення сторони відхилення цілі від напрямку осі антени, як це робилося в амплітудних ФД, немає потреби.
Якщо припустити, що сумарна і різницева ДН амплітудного пеленгатора визначаються виразами (4) і (5), то вираз пеленгаційної характеристики напівкутового фазового дискримінатора, що працює разом із сумарно-різницевим амплітудним пеленгатором, матиме вигляд
Графіки цієї функції наведені на рис. 10.
Графіки обраховані за умови, що довжина робочої хвилі бортових відповідачів дорівнює 27,5 см, а розкриви антенних ґраток у поземному напрямку дорівнюють відповідно 10; 8 і 5 м. Як очевидно з рисунку, на відміну від пеленгаційних характеристик кутового фазового дискримінатора (див. рис. 8) робочий сектор однозначного визначення відхилення цілі від напрямку осі антени в цьому випадку практично обмежується лише шириною ДН сумарного променя антени і припустимої зміни крутизни пеленгаційної характеристики.
|
Деяке ускладнення схеми напівкутового дискримінатора, пов’язане з необхідністю введення третього каналу для сумарного сигналу, двох ФД і додаткових перетворювачів фаз, не принципове. Основним недоліком аналізованої схеми, як і для кутового фазового дискримінатора, є необхідність стабілізації фазових співвідношень сигналів у всіх трьох каналах. Нестабільність фази може призвести до прямих помилок визначення азимутального положення цілі. Усувається цей недолік в сучасних моноімпульсних ВРЛ раціональністю рішень під час розробки і виготовлення апаратури приймачів, а також застосуванням контрольних відповідачів і спеціальних каліброваних пілот-сигналів, за якими провадиться постійна корекція фазових характеристик дискримінаторів.
На разі принцип напівкутового фазового визначення азимутального положення цілей використовується в радіолокаторах RSM 970 (Thomson-CSF, Thales, Франція), RSM 970S (Airsys ATM, Франція), IRS-20 MP/L (Indra-Іспанія), MSSR/Mode S (Northrop Grumman, США), S-470 Messenger (Marconi Radar Systems, Англія), CM SSR-401 (Cardion Electronics, США) і в деяких інших радіолокаторах.