Министерство образования Республики Беларусь
Учреждение образования
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Контрольная работа по курсу
"Основы радиоэлектроники и схемотехники"
2009
Решение:
Цепь представленная на рис.1 является интегрирующей, если постоянная времени цепи t=RC будет удовлетворять условию:
t>>tи
На практике цепь считается интегрирующей, если t= (5…10) tи
Рисунок 1
Согласно заданию на вход интегрирующей цепи воздействует одиночный прямоугольный импульс, описываемый следующим уравнением:
u1 (t) = 10, при 0≤t<10-60, при t≥10-6
Поскольку выходное напряжение интегрирующей цепи u2 (t) равно напряжению на конденсаторе C uc (t), то для определения формы выходного напряжения необходимо определить изменения напряжения на конденсаторе. Форма выходного напряжения может быть найдена как алгебраическая сумма откликов на положительный и отрицательный скачки.1. Определим изменение напряжения на емкости в момент времени 0≤t<tи, где tи - длительность импульса равная 1 мкс.В соответствии с классическим методом расчета, переходное напряжение представляют в виде суммы принужденного и свободного напряжений.
u (t) = uпр (t) +uсв (t) (1)
где uпр (t) - принужденное напряжение, определяется в установившемся режиме после коммутации. Это напряжение создается внешним источником питания. Если в цепь включен источник постоянной ЭДС, принужденное напряжение будет постоянным, если в цепи действует источник синусоидальной ЭДС, принужденный напряжение изменяется по периодическому, синусоидальному закону;
uсв (t) - свободное напряжение, определяется в схеме после коммутации, из которой исключен внешний источник питания. Свободное напряжение создается внутренними источниками питания например зарядом емкости.
Свободное напряжение uсв (t) определяется по формуле
uсв (t) =A1ep1t+A2ep2t+….
Количество слагаемых в формуле определяется числом реактивных элементов (индуктивностей и емкостей)где A1, A2 - постоянные интегрирования.p1, p2 - корни характеристического уравнения.Уравнение 1+pRC=0 называется характеристическим
p=-1/RC - корень характеристического уравнения
t=1/p=RC - постоянная времени цепи
Начальные условия - это переходные токи и напряжения в момент коммутации, в момент времени t, равный нулю.Исходя из вышесказанного формулу (1) можно записать в следующем виде:uc (t) = ucпр+Aept = ucпр+Ae-t/t (2) В начальный момент времени емкость не заряжена и uc (0) =0uc (0) = ucпр+A
A=uc (0) - ucпр=0 - ucпр= - ucпр=-E (3)
На основании формул (1) и (2) переходное напряжение на емкости в момент времени 0≤t<tи будет определятся по формуле:
uc (t) = E-Ee-t/t=E (1-e-t/t) (4)
2. Определим изменение напряжения на емкости в момент времени t≥tи.
В данный момент времени импульс на входе цепи равен 0 и емкость начинает разряжаться, что эквивалентно существованию в цепи только свободного напряжения, принужденное напряжение равно нулю. Напряжение на емкости за длительность импульса tи достигнет напряжения равного:
uc (0) =A=ucсв (0) =E-Ee-tи/τ
Тогда в соответствии с формулой (1) и с учетом того что принужденное напряжение равно нулю имеем переходное напряжение на емкости в момент времени t≥tи:
uc (t) = ucсв (t) =Ae-t/τ= (E-Ee-tи/τ) e-t/ τ=E (e-t/ τ-e- (t+tи) /τ) (5)
Подставив в формулы (4) и (5) значения заданного сигнала E=10В, tи=1мкс, а также τ =5tи =5мкс и просуммировав переходные напряжения на емкости в разные моменты времени получим отклик интегрирующей цепи на входной прямоугольный импульс:
u2 (t) = 10× (1-e-t/0.000005) при 0≤t<10-610× (e-t/0.000005-e- (t+0.000001) /0.000005) при t≥10-6
На рисунке 2 приведены графики u1 (t) и u2 (t)
интегрирующая распределительная цепь напряжение
Рисунок 2
Комплексная передаточная функция напряжения интегрирующей цепи равна:
.Тогда амплитудно-частотная и фазово-частотная характеристики примут вид:
.Графики амплитудно-частотной и фазово-частотной характеристик для заданной интегрирующей цепи приведем на рисунках 3 и 4 соответственно.
Ширина полосы пропускания интегрирующей RC - цепи равна частоте среза
wср=1/t=1/5×10-6=2×105
fср=wср/2p=3,183×104 Гц
Рисунок 3
Рисунок 4
Пусть на вход этой же интегрирующей цепи воздействуют периодические прямоугольные импульсы с частотой 100 кГц, длительностью tи = 1 мкс.
Определим отклик интегрирующей цепи на данное воздействие спектральным методом. Для этого произведем разложение периодической последовательности импульсов в ряд Фурье в вещественной форме. Ограничим количество гармонических сигналов в ряде 15-ю, что позволит получить сигнал с довольно высокой точностью.
Амплитудно-частотная и фазо-частотная характеристики цепи имеют вид:
Отклик на выходе цепи будет представлять собой произведение каждой гармоники входного сигнала на частотный коэффициент передачи цепи на соответствующей частоте:
С учетом равенств:
Построим временные диаграммы uвх (t) и uвых (t) при помощи пакета MathCAD.
Большое применение находит аналитический метод анализа, получивший название метода угла отсечки. Угол отсечки, числено равен половине той части периода, в течение которого через НЭ протекает ток.
Угол отсечки легко найти из равенства
: (1)Угол отсечки, соответствующий максимуму n-ой гармоники в спектре тока (при
) определяется по формуле:Выразив в формуле (1) u0 получаем смещение при котором на выходе НЭ первая гармоника тока будет максимальной.
Функция тока определяется следующим выражением:
. (2)При
:Амплитуды спектральных составляющих тока через НЭ определяются через коэффициенты Берга:
(3)где коэффициенты
являются функциями одного аргумента - угла отсечки , получили название коэффициентов (функций) Берга.Функции Берга можно определить по следующим формулам
Значения функций Берга для угла отсечки равного 1800 сведем в таблицу 1
Таблица 1
a0 | a1 | a2 | a3 | a4 |
0,5 | 0,5 | 0 | 0 | 0 |
Согласно формуле (3) спектральные составляющие тока равны:
Коэффициент гармоник определим по формуле:
Эпюры входного сигнала и тока протекающего через НЭ приведем на рисунке 1.
Рисунок 1
Определим девиацию частоты по следующей формуле:
(1)Спектр частотно модулированного сигнала при наличии одной модулирующей частоты определяется по формуле: