Российский Государственный Социальный Университет
Факультет Социальных информационных технологий
Кафедра Информационной безопасности
Курсовая работа
по дисциплине
Системы и сети связи
Москва – 2006
Для системы связи (СС) с переспросом с ожиданием ответа одностороннего действия (рис. 1) при заданных исходных данных:
1. Найти двоичный циклический (n,k)-код Хэмминга, который обеспечивает передачу сообщений в СС с вероятностью выдачи ложного сообщения Рлс(n,k) < Pдоп при следующих условиях:
¾ прямой дискретный канал в СС является двоичным симметричным каналом (ДСК) с постоянными параметрами;
¾ обратный непрерывный канал – без помех;
¾ код используется только для обнаружения ошибок;
¾ найденный значения n и k должны обеспечивать минимум разности Pдоп -Рлс(n,k) для возможных значений n и k.
2. Отложить в координатных осях вычисленные значения Рлс(n,k) для всех исследованных пар (n,k). В этих же осях прямой линией изобразить заданное значение Pдоп.
Вероятность искажения двоичного символа p | 6x10-4 |
Допустимая вероятность ложного сообщения Pдоп | 2x10-7 |
Допустимое число переспросов s | ∞ |
Разрядность кода n | >10 |
Порождающий многочлен gi(x) | g3(x) |
Тип кодера | КД 1 |
Ввод информационных символов в кодер | последовательно |
Тип декодера | ДК 2 |
Рисунок 1. Структурная схема СС с переспросом с ожиданием ответа одностороннего действия
Информационная последовательность отдельными комбинациями не корректирующего кода через первое положение ключа направляется в кодер и в ЗУ передатчика. На выходе кодера образуется комбинация корректирующего кода, которая поступает в модулятор прямого канала. В прямом канале возможно искажение сигнала. На приемной стороне решение о принятом символе принимается демодулятором с так называемой зоной ненадежности.
Принцип его работы можно понять из рисунка.
Пусть символ «1» передается по каналу связи импульсом положительной полярности с амплитудой U, а «0» импульсом отрицательной полярности с той же амплитудой.
В демодуляторе выделена некоторая зона +V –V, если принимаемый импульс попадает в эту зону (зона ненадежности), то демодулятор считает, что он не может принять надежного решения, о том, какой символ передавался. В этом случае, демодулятор выдает символ ненадежности Z. С выхода демодулятора комбинации поступают на вход декодера. После поступления всей комбинации с выхода декодера в обратный канал направляется одна из двух команд:
¾ «переспрос», если содержатся ошибки в принятой комбинации, и одновременно кодовое слово с символами Z стирается;
¾ «продолжение», если не обнаружено ошибок, и комбинация не корректирующего кода направляется к получателю.
Если различитель команд получает команду «продолжения», то из ЗУ передатчика в прямой канал направляется следующая порция* информации. Если различитель команд получает команду «переспрос», то он переключает ключ в положение 2 и из ЗУ передатчика в прямой канал повторно направляется комбинация, которая была стерта.
После выдачи в прямой канал из ЗУ передатчика очередной порции информации, следующая порция не передаётся до тех пор, пока не будет получен ответ по этой порции.
Произведем расчет для (18,13)-кода с d=3.
Для этого введем обозначения:
· Pбо – вероятность появления на выходе ДСК комбинации (n,k)-кода без ошибок при однократной передаче;
· Роо – вероятность появления на выходе ДСК комбинации (n,k)-кода с обнаруживаемыми ошибками при однократной передаче;
· Рно – вероятность появления на выходе ДСК комбинации (n,k)-кода с необнаруживаемыми ошибками при однократной передаче;
· Рi£vо – вероятность появления на выходе ДСК комбинации с ошибками кратности i£v0;
· Рi>vо – вероятность появления на выходе ДСК комбинации с ошибками кратности i>v0, которые расположены так, что обнаруживаются кодом;
· Рлс– вероятность появления на выходе СС с неограниченным числом переспросов ложного сообщения.
Найдем:
хэмминг код цикличный программа
Pбо = qn, где q=1-p;
Рi£vо =
, где v0=d-1;Роо = Рi£vо + Рi>vо;
Рно £ 1- Pбо - Рi£vо;
Рлс = Рно/(1- Роо).
Пример:
Pбо = qn=0,999418=0,98925490, где q=1-p=0,9994;
Рi£vо =
= + =18*0,0006*0,98984881+153*0,00000036*0,99044307=0,01074492, где v0=d-1=2;
Роо = Рi£vо + Рi>vо= 0,01074492;
Рно £ 1- Pбо - Рi£vо=1-0,98925490-0,01074492=0,00000018;
Рлс = Рно/(1- Роо)=0,00000018/(1-0,01074492)=0,00000018.
Описание алгоритма:
1) Начало;
2) Объявляем P = 0.0006, Pdop=0.0000002, i=0, k, Pbo, Poo, Pno, Pls, lgPls, h=0, M[61], H[], d=3;
3) Вручную меняем d (по умолчанию d=3);
4) Если d=2, то i=11, иначе переходим к шагу 7;
5) Если i<=31, тоPbo=(1-P)^i, Poo=0, Poo=(C )*(P^1)*(1-P)^(i-1),
Pno=1-Pbo-Poo, Pls=Pno/(1-Poo), lgPls=log10(Pls),
M[i-11]=(Pdop-Pls), i=i+1, переходим к шагу 5, иначе переходим к шагу 35;
6) Выводим Pbo, Poo, Pno, Pls, lgPls, переходим к шагу 5;
7) Если d=3, то i=11, иначе переходим к шагу 21;
8) Если i<=15, то Pbo=(1-P)^i, Poo=0, k=1, иначе переходим к шагу 14;
9) Выводим Pbo;
10) Если k<=2, то Poo=
, иначе переходим к шагу 12;11) k=k+1, переходим к шагу 10;
12) Pno=1-Pbo-Poo, Pls=Pno/(1-Poo), lgPls=log10(Pls),
M[i+10]=(Pdop-Pls), i=i+1;
13) Выводим Poo, Pno, Pls, lgPls, переходим к шагу 8;
14) i=17;
15) Если i<=31, то Pbo=(1-P)^i, Poo=0, k=1, иначе переходим к шагу 35;
16) Выводим Pbo;
17) Если k<=2, то Poo=
, иначе переходим к шагу 19;18) k=k+1, переходим к шагу 17;
19) Pno=1-Pbo-Poo, Pls=Pno/(1-Poo), lgPls=log10(Pls),
M[i+10]=(Pdop-Pls), i=i+1;
20) Выводим Poo, Pno, Pls, lgPls, переходим к шагу 15;
21) Если d=4, то i=11, иначе переходим к шагу 35;
22) Если i<=15, то Pbo=(1-P)^i, Poo=0, k=1, иначе переходим к шагу 28;
23) Выводим Pbo;
24) Если k<=3, то Poo=
, иначе переходим к шагу 26;25) k=k+1, переходим к шагу 24;
26) Pno=1-Pbo-Poo, Pls=Pno/(1-Poo), lgPls=log10(Pls),
M[i+10]=(Pdop-Pls), i=i+1;
27) Выводим Poo, Pno, Pls, lgPls, переходим к шагу 22;
28) i=17;
29) Если i<=31, то Pbo=(1-P)^i, Poo=0, k=1, иначе переходим к шагу 35;
30) Выводим Pbo;
31) Если k<=3, то Poo=
, иначе переходим к шагу 33;32) k=k+1, переходим к шагу 31;
33) Pno=1-Pbo-Poo, Pls=Pno/(1-Poo), lgPls=log10(Pls),
M[i+10]=(Pdop-Pls), i=i+1;
34) Выводим Poo, Pno, Pls, lgPls, переходим к шагу 29;
35) h=0, i=0;
36) Если i<=60, то переходим к шагу 37, иначе переходим к шагу 38;
37) Если M[i]>0, то h=h+1, i=i+1, иначе i=i+1 и переходим к шагу 36;
38) Выделяем память под массив Н из h элементов.
39) Если i<=60, то переходим к шагу 40, иначе переходим к шагу 41;
40) Если M[i]>0, то H[k]=M[i], k=k+1, i=i+1, иначе i=i+1 и переходим к шагу 39;
41) i=0;
42) Ищем минимальный элемент в массиве Н;
43) Если i<=60, то переходим к шагу 44, иначе переходим к шагу 50;
44) Если M[i]=минимальному элементу, то и переходим к шагу 45, иначе i=i+1 и переходим к шагу 43;
45) Если i>=0 и i<=20, то выводим (i+11,i+10)-код, иначе переходим к шагу 46;
46) Если i>=21 и i<=25, то выводим (i-10,i-14)-код, иначе переходим к шагу 47;
47) Если i>=26 и i<=40, то выводим (i-9,i-14)-код, иначе переходим к шагу 48;
48) Если i>=41 и i<=45, то выводим (i-30,i-35)-код, иначе переходим к шагу 49;
49) Если i>=46 и i<=60, то выводим (i-29,i-35)-код, иначе i=i+1 и переходим к шагу 39;
50) Выводим минимальный элемент из массива Н, как минимум разницы Рдоп-Рлс;
51) Конец.
Программа написана на языке С++.
#include <vcl.h>
#include <math.h>
#include <stdio.h>
#include <vector>
#include <algorithm>
#pragma hdrstop
#include "Unit1.h"
//---------------------------------------------------------------------------
#pragma package(smart_init)
#pragma resource "*.dfm"
float P = 0.0006;
float Pdop = 0.0000002;
using namespace std;
float M[61];
vector<float>H;
char B[128];
TForm1 *Form1;
//---------------------------------------------------------------------------
__fastcall TForm1::TForm1(TComponent* Owner)
: TForm(Owner)
{
}
//---------------------------------------------------------------------------
float C(int n,int m)
{float c=1.0;
for(int i=n;i>=n-m+1;i--)c*=i;
for(int i=1;i<=m;i++)c/=i;
return (int)c;
}
void __fastcall TForm1::ComboBox1Select(TObject *Sender)
{int i=0, k;
double Pbo,Poo,Pno,Pls,lgPls;
AnsiString s;
ListBox1->Clear();