Пусть Ф – отношение тепла, аккумулированного чувствительной частью термометра на 1°С к ее поверхности, т.е.
,где V – объем чувствительной части термометра, см3;
y – плотность материала, г/см3;
с – теплоемкость, кал/г;
S – поверхность, см2.
Тогда
,где а – коэффициент теплоотдачи от среды, ккал/м2*ч*град;
– показатель тепловой инерции термометра, мин; – переводной коэффициент для размерностей.Отклонение характеристики термопреобразователя сопротивления от стандартной
Температурная характеристика термометра сопротивления может отличаться от градуировочной таблицы в зависимости от точности подгонки сопротивления термометра при нулевой температуре и от чистоты металла термосопротивления. Чистоту металла принято определять отношением
, где R100 и R0 сопротивления термометра соответственно при 100 и 0°С.Допустимые отклонения R0и
, от номинального значения, установленные для технических термометров, приведены в табл. 4.1. Влияние этих допустимых отклонений на результат измерения сказывается тем больше, чем выше измеряемая температура (табл. 4.2).Для платиновых термометров сопротивления II класса ошибка при температуре 500°С может быть до 2,5°С.
Подбор терморезисторов
Терморезисторы обычно подбирают по номинальному значению сопротивления при температуре 20°С (R20) – Температурная характеристика терморезистора описывается выражением
,где R20 – начальное сопротивление терморезистора при температуре 20°С
e – основание натуральных логарифмов;
В – постоянный коэффициент, °К;
Т – температура, °К. Промышленность выпускает терморезисторы с допуском на начальное сопротивление R20 ±20 %, на температурный коэффициент ±8 % и на коэффициент температурной характеристики В ±17 %.
Для подбора полупроводниковых терморезисторов с одинаковыми характеристиками необходимо измерить, их сопротивление при 20° С – R20 и при 100°C (R100).
По значениям R20 и R100 можно также рассчитывать и строить температурные характеристики
, Коэффициент В определяется по формулеВлияние температуры окружающей среды
Провода, соединяющие термометр сопротивления с измерительным прибором, изготовляются обычно из меди. При изменении температуры окружающей среды их сопротивление меняется. Это вносит дополнительную погрешность в результаты измерения. Чтобы избежать появления этой погрешности часто применяют трехпроводную схему включения термометра сопротивления.
Каждый из соединительных проводов в этом случае оказывается включенным в противоположное плечо моста. Изменение сопротивления проводов приводит к изменению сопротивления обоих противоположных плеч. Полностью влияние соединительных проводов при трехпроводной схеме устраняется только в случае, если сопротивления обеих соединительных линий одинаковы и мост симметричный, т. е. R1=R2. Также применяется четырехпроводная схема включения термопреобразователя, которая в симметричном мосте исключает влияние сопротивления соединительных проводов независимо от равенства их сопротивлений.
При двухпроводной схеме включения термопреобразователя погрешность может быть подсчитана, если известны градуировка термометра, температура окружающей среды и сопротивление соединительных проводов при нормальной температуре (20°С).
Пересчет величины сопротивления проводов при нормальной температуре R20 на сопротивление при данной температуре производится по формуле
.Если соединительные провода медные (температурный коэффициент а=0,004), подсчет может производиться по формуле
.Проверка основной погрешности термопреобразователя сопротивления
Количество отсчетов при каждом значении температуры – не менее 4.
Значение температуры рассчитывается по формуле
,где n – число измерений;
ti – значение температуры, измеряемой термопреобразователем, °С. Основную погрешность вычисляют по формуле
,где td – действительное значение температуры, измеряемое эталонным средством.
Температура – важнейший параметр технологических процессов многих отраслей промышленности. Внедрение прогрессивных технологий повышает требования к точности измерений температуры. Одновременно с этим усложнение процессов производства заставляет расширять диапазоны измерений температуры и изыскивать новые методы ее измерений в более сложных производственных условиях.
Понятие «новизны в термометрии ПГ «Метран»» связала с разработкой новых конструкций и применением новых материалов и технологий.
Технология изготовления термоэлектрических преобразователей из термопарного кабеля КТМС с применением импульсной лазерной сварки рабочего спая ранее использовалась только на предприятиях атомной энергетики и военной промышленности и была закрыта для широкого использования. В настоящее время кабельные термопреобразователи стали доступны для применения в различных отраслях промышленности и научных исследованиях.
Именно на базе термопарного кабеля и лазерной сварки ПГ «Метран» была разработана серия термопреобразователей ТХА/ТХК Метран-200.
В номенклатуру продукции вошли также термопреобразователи сопротивления медные (50М, 100М) и платиновые (50П, 100П, РПОО, Р1500, Р11000) разных конструкций, с одним и двумя чувствительными элементами.
За эти годы освоено производство как самых простых термопар и термометров сопротивления, так и современных микропроцессорных датчиков температуры.
Например, ПГ «Метран» предлагает датчики температуры с унифицированными выходными сигналами серии Метран-270, Метран-270МП имеющими широкий модельный ряд, включающий общепромьштенное, взрывозащищенное(Ех1а,Ехф исполнения и 15 вариантов защитной арматуры.
Применение этой серии датчиков дает возможность построения АСУ ТП без дополнительных нормирующих преобразователей.
Микропроцессорный преобразователь датчиков Метран-270МП позволяет перенастраивать диапазон измерений и перепрограммировать номинальную статическую характеристику в случае замены чувствительного элемента на другой тип.
Российские интеллектуальные датчики температуры Метран-280 с поддержкой коммуникационного протокола НАРТ, позволяют создавать глобальные АСУ ТП с минимальными затратами.
Микропроцессорная электроника Метран-280 позволяет повысить точность измерений. Одновременно технология НАРТ-протокола позволяет по одной паре проводов передавать и аналоговый 4-20 мА, и цифровой сигналы, что дает возможность использовать уже имеющиеся коммуникации для аналоговых сигналов.
Мы можем дистанционно принимать необходимую информацию от полевых датчиков Метран-280 и осуществлять диагностику и настройку, используя для этого коммуникатор Метран-650 или компьютер с программным обеспечением H-Master. Приведенные функции особенно высоко оцениваются, когда датчики расположены в труднодоступных местах и на больших расстояниях друг от друга.
Непрерывная самодиагностика Метран-280 обеспечивает оперативность проведения ремонтных и профилактических работ, т.к. в случае неисправности датчик немедленно выдает сигнал о возникновении нештатной ситуации (сбоя) в конкретном блоке. Также немаловажен экономический эффект от эксплуатации датчиков с микропроцессорами из-за быстрой окупаемости первоначальных вложений и минимальной стоимости владения.
ИНГ состоит из первичного преобразователя температуры и электронного модуля (ЭМ) с выходными сигналами:
– аналоговым 4-20 мА:
– цифровым HART версии 5 с физическим интерфейсом Bell-202.
ИНГ имеют термоэлектрический хромель-алюмелевый (ТХА) чувствительный элемент (ЧЭ) или резистивный платиновый ЧЭ (ТСП).
Измеряемый параметр – температура в ИНГ Метран-286 с помощью ГОТГ преобразуется в изменение омического сопротивления платинового ЧЭ. Аналоговый сигнал поступает на вход ЭМ, преобразуется с помощью аналогово-цифрового преобразователя (АЦП) в дискретный сигнал. Дискретный сигнал с помощью микропроцессорного преобразователя (МП) обрабатывается с целью:
– линеаризации НСХ ЧЭ 11111;
– перестройки диапазонов измерения в пределах рабочего диапазона температур;
– самодиагностики составляющих узлов ЭМ;
– детектирования обрыва или короткого замыкания ППТ.
С выхода МП дискретный сигнал поступает на цифро-аналоговый преобразователь (ЦАП), осуществляющий преобразование дискретного сигнала в унифицированный токовый аналоговый сигнал 4-20 мА, а также на блок частотного модулятора, преобразующий дискретный сигнал в частотно модулированный и наложенный на аналоговый сигнал.