Базовый вариант сети - FoundationFieldbusHI (FTHI); он реализует безопасную работу приборов во взрывоопасной среде. Кроме него существует вариант Foundationfieldbus Н2 (FF Н2); близкий по характеристикам к варианту FF Ю, в котором специфика работы приборов во взрывоопасной среде не учитывается.
Основные характеристики сет» FFHI: топология сети - шина или дерево; физически передача данных в сети осуществляется через «орт RS-485 и экранированную витую пару; длина линии передачи - 1,9 км; скорость передачи данных - 31,25 Кбита/с; число подключаем их к сети устройств до 32; протокол сети использует три уровня по модели OSI: первый (физический уровень), второй (канальный уровень) и седьмой (прикладной уровень), а также добавочный пользовательский уровень, на котором фиксируется ряд важных функций и правил; метод доступа к сети - маркет; управление сетью может быть распределено между несколькими активными планировщиками связей, которые могут резервировать Друг друга; периодический цикл передачи информации с учетом отработки в приборах контуров управления составляет 50 мс; аналогично HART протоколу здесь используется понятие «статус», которое каждый цикл может передаваться каждым прибором по сети вместе с его данными.
В стандарт FFHIвведен пользовательский уровень. Оп определяет связи, с помощью которых оператор может взаимодействовать с приборами либо через, так называемую, серию блоков, либо через описатели приборов.
Современные интеллектуальные датчики обеспечивают;
· резкое уменьшение искажений измерительной информации на пути от датчика к контроллеру, т.к. вместо низковольтного аналогового сигнала по кабелю, соединяющему датчики с контроллером, идут цифровые сигналы, на которые электрические и магнитные промышленные помехи оказывают несравнимо меньшее влияние;
· увеличение надежности измерения благодаря самодиагностике датчиков, тле. каждый датчик сам оперативно сообщает оператору факт и тип возникающего нарушения, тем самым, исключая использование дня управления некачественных и/или недостоверных измерении;
· возможность использования принципов измерения, требующих достаточно сложной вычислительной обработки выходных сигналов сенсора, но имеющий рад и ре имущее тв перед традиционно используемыми принципами измерения по точности, стабильности показаний, простота установки и обслуживания датчика в процессе его эксплуатации;
· возможность построения мулътисенсорных датчиков, в которых преобразователь получает и перерабатывает сигналы ряда однотипных или разнотипных чувствительных элементов;
· возможность проведения всей необходимой первичной переработки измерительной информации в датчике и выдачи им искомого текущего значения измеряемой величины в заданных единицах измерения;
· возможность передачи в систему автоматизации не только текущего значения измеряемой величины, но и добавочных сигналов о выходе его за пределы заданных норм, а также возможность передачи
· посети не каждого текущего измеряемого значении, а только изменившегося по сравнению с предыдущим значения, или вышедшего за пределы заданных норм значения, или значения, требующего управляющего воздействия;
· наличие в датчике базы данных для хранения значений измеряемой величины за заданный длительный интервал времени;
· возможность дистанционно с пульта оператора а оперативном режиме выбирать диапазон измерения датчика, устанавливать ноль прибора;
· возможность, путем программирования работы датчика на достаточно простом технологическом языке, реализовать в нем простые алгоритмы регулирования, программного у правлении, блокировок механизмов;
· возможность строить достаточно простые цепи регулирования, программного управления, блокировок на самом нижнем уровне управления из трех компонентов: интеллектуальных датчиков, полевой сети и интеллектуальных исполнительных механизмов, не загружая память вычислительными операциями контроллеры, что позволяет использовать мощность контроллеров для реализации в них достаточно сложных и совершенных алгоритмов управления.
В настоящее время наблюдаются следующие тенденции развития ИД. Развитие многофункциональных свойств датчика. Перспективные разработки ведутся по реализации в датчике функции прогнозирования значения измеряемой величины, по углублению текущей самодиагностики датчика и на ее базе по прогнозированию в самом датчике возможной некорректной его работы и по составлению рекомендаций по его обслуживанию, aтакже по адаптации шкалы датчика к диапазону изменения измеряемой величины. Кроме того, все больший объем задач по расчету показателей, по обнаружению заданных событий.
По реализации задач управления перекладываете я с контроллера на датчик. Ввиду этого сам термин «датчик» становится все более неполным и условным.
Миниатюризация датчика. Создание миниатюрных датчиков на базе ряда известных и частично новых методов измерения с использованием миниатюрных по размерам микропроцессоров позволяет выпускать промышленное оборудование с встроенными в него датчиками и создавать системы автоматического мониторинга работы машин и механизмов, кттгорые определяют текущий износ отдельных узлов оборудования и, следовательно, повышают надежность его работы и совершенствуют имеющуюся на предприятиях систему обслуживания н ремонта оборудования.
Расширение видов связи датчика с контроллером. В настоящее время датчик связывается с контроллером либо через самостоятельный проводной канал аналоговых сигналов, либо через общую для ряда датчиков цифровую проводную сеть. В случае значительною удаления датчиков от основных средств системы автоматизации датчик с помощью отдельных специальных средств телемеханики может общаться с контроллером по радиоканалу. В ряде фирм сейчас ведутся работы по созданию беспроводных датчиков, в которые встраиваются блоки коротковолновой радиосвязи (аналогичными блоками оснащаются и контролеры). Предпосылками развития указанных типов датчиков служат с одной стороны наблюдающееся снижение стоимости средств коротковолновой радиосвязи и повышение надежности работы этих средств, а с другой стороны возникающая экономия затрат на проводную связь, упрощение монтажа системы и расширение возможных мест установки датчиков.
Часто материалы, процессы изготовления или отдельные операции сенсорных технологам несовместимы с материалами, производственными процессами или эксплуатационными требованиями технологий, обеспечивающих «интеллектуальные» способности на основе микроэлектроники. Процесс тесной интеграции интеллекта а датчиках требует сочетания сметанных технологий изготовления интегральных схем с производственной технологией, применяемой при создании соответствующих датчиков.
При изготовлении ИД может возникнуть технологическая несовместимость в процессе интеграции.
Очевидный пример подобной технологической несовместимости -случай термопары. Рассчитанной' на работу в температурном диапазоне 300...500 "С. Не говоря уже о том, что большинство микроэлектронных устройств не могут работать при температурах выше 150 'С, материалы, используемые для создания термопар, как правило, несовместимы с материалами тщательно контролируемой высокой чистоты, используемыми в процессах создания кремниевой микроэлектроники. Ничтожные количества металлов, используемых обычно и термопарах, таких как хром, никель, железо, платина, медь и алюминий, могут сыграть роль легирующих примесей в полупроводниках. Присутствие микроскопических количеств этих металлов на некоторых стадиях изготовления микроэлектроники может испортить весь процесс.
В некоторых случаях интеллектуальные интерфейсы могут поддерживать желаемые сетевые возможности, не требуя от технологии изготовления датчиков технической совместимости.
Интеллектуальный интерфейс объединяет функциональные возможности схем обработки сигналов и сетевых схем в единый интерфейс ИД. который служит промежуточным звеном между сетью и датчиком.
Микросенсорные кластеры.
Одиночные интеллектуальные датчики весьма полезны во многих ситуациях. Однако очень часто для реализации некоторых функции
требуется множество датчиков, В таких случаях необходима интеграция группы датчиков с несколькими вспомогательными компонентами. В результате появляется микропроцессорный кластер. Компоненты микропроцессорный кластера изображены на рис,2.1.Необходимы семь составляющих: несколько сенсоров, интерфейсная электроника, микроконтроллер или другие средства вычисления, (с ассоциированной памятью), средства передачи информации и, возможно, получения команд или новых программ, источник питания, печатная плата и корпус. Наряду с концепцией микропроцессорного кластера имеет место и другой распространенный подход к многосеннсорным системам. Многие серийные системы имеют узлы, включающие большинство означенных функций, но сенсоры связаны между собой, а не интегрированы
В ближайшем будущем сети датчиков будут развиваться по двум, направлениям. Во-первых, появятся сенсорные кластеры с большими функциональными возможностями, более компактные и с меньшим энергопотреблением. Во-вторых, станут доступными усовершенствованные средства беспроводной передачи данных.
Сверхзадача искусственного интеллекта датч1ош - увеличение сю срока службы в метрологическом исправном состоянии
В качестве определяющего признака ИД предполагают принять наличие избыточности, обеспечивающей восприятие и переработку дополнительной информации и на этой основе выполнение функций метрологического самоконтроля.
Способность метрологическому самоконтролю позволяет ИД осуществлять функции самокоррекций и обеспечения живучести.