Любое устройство создается для надежной безотказной работы. Свойство устройства сохранять во времени в установленных пределах значения всех параметров, характеризующих его способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания и ремонтов, хранения и транспортирования, называется надежностью. Если все параметры соответствуют требованиям документации, такое состояние называют работоспособным, а событие, состоящее в нарушении работоспособности, -отказам. Таким образом, для возникновения отказа достаточно ухода хотя бы одного параметра за пределы, установленные нормативно-техническими документами
В зависимости от того, каким образом проявляются эти ухода параметров, различают внезапные и постепенные отказы. Внезапный отказ характеризуется скачкообразным изменением эксплуатационных параметров устройства, в связи с чем прогнозировать момент его возникновения практически невозможно. Примеры внезапных отказов - короткое замыкание обкладок конденсатора, обрыв выводов или пробой перехода транзистора. Постепенный отказ характеризуется постепенными, плавными изменениями во времени одного или нескольких параметров, обусловленными влиянием необратимых процессов старения и износа. При этом, наблюдая за соответствующими параметрами в течение длительного времени, всегда можно выявить тенденции или закономерности их изменения и предсказать причину и время возникновения отказа. В качестве примера постепенных отказов можно привести увеличение обратного тока коллекторного перехода транзистора Iко, уменьшение коэффициента передачи или полосы пропускания линейной интегральной схемы.
Для цифровых устройств, работающих в условиях действия помех (наводки по цепям питания, внутренние шумы и т. д), характерно наличие относительно большого числа самоустраняющихся отказов (сбоев). Данный вид отказов связан с нарушением работоспособности устройства на короткое время, после чего правильная работа аппаратуры восстанавливается самопроизвольно, без вмешательства извне. Следствием сбоев могут быть искажения информации (исходных данных, управляющих воздействий и т д.), что может повлиять на нормальное функционирование устройства малая длительность сбоя осложняет задачу его выявления и ликвидации связанных с ним нежелательных последствий.
Надежность любого объекта, в том числе и электронного устройства, зависит от многих факторов, таких как качество использованных в нем деталей, их взаимное расположение, условия охлаждения, качество сборки (монтажа), условия эксплуатации (температура, влажность, наличие вибрации), качество обслуживания и пр. В зависимости от назначения и режима эксплуатации изделия можно разделять на две группы:
1) невосстанавливаемые, при отказе их заменяют исправными (к ним относят элементы электронной и электротехнической аппаратуры: резисторы, конденсаторы, диоды, интегральные микросхемы и пр.),
2) восстанавливаемые, их можно ремонтировать, заменяя в них отказавшие элементы и восстанавливая нарушенные связи.
Рассматривая отказ как событие случайное, для количественной оценки надежности используют вероятность безотказной работы и вероятность отказа вероятность того. что в заданном интервале времени t отказ устройства не произойдет, т. е. его эксплуатационные параметры будут находиться в установленных пределах, называется вероятностью безотказной работы P(t). Данная характеристика представляет собой монотонно убывающую функцию времени t, причем Р(0) = 1. Р (∞) = 0. (Предполагается, что вначале изделие исправно, а после некоторого времени, может быть очень большого, оно обязательно выйдет из строя.) Представление о том, каков характер функции P(t), можно получить в результате эксперимента с большой группой изделий. Результаты эксперимента с группой отражают поведение всей массы изделий (генеральной совокупности), если выборка достаточно объемна. В этом случае говорят о представительной выборке. Пусть выборка содержит No = 1000 изделии (резисторов, конденсаторов, микросхем). Поставим их в режим, соответствующий паспортным условиям эксплуатации (окружающая температура, ток, напряжение), и будем фиксировать момент отказа каждого изделия или количество отказавших изделий нарастающим итогом через каждые Δt ч. Тогда вероятность безотказной работы:
P(t)=N(t)/N,, (1)
где N(t) - число изделий, оставшихся исправными к моменту времени t. Располагая полученной информацией, можно определить, какова в среднем вероятность того, что аналогичное изделие будет работоспособным через 10, 100,1000 ч, сколько часов может эксплуатироваться изделие, если задано допустимое нижнее значение P(t).
Вероятность отказа определяется как вероятность появления отказа в течение времени t: Q(t) = (No - N(t))/No. Так как работоспособное состояние и состояние отказа образуют полную группу событий, то характеристики P(t) и Q(t) удовлетворяют соотношению P(t) +Q(t) = 1.
Введем понятие плотности вероятности появления отказа:
(2)важной характеристикой надежности является и интенсивность отказов:
(3)представляющая собой вероятность отказа изделия в единицу времени после данного момента t при условии, что до него отказ не возникал. Сравнивая выражения для a(t) и λ(t), нетрудно увидеть различия между ними. Значение а(t)Δtхарактеризует относительную долю отказавших изделий за интервал [t, t + Δt], взятых из произвольной группы поставленных на испытания изделий, независимо от того, исправны они или отказали к моменту времени t. Значение λ (t)Δt определяет относительную долю отказавших изделий в интервале [t, t + Δt], взятых из группы изделий, оставшихся работоспособными к рассматриваемому моменту t . Для элементов электронной аппаратуры типичные значения λ от 10-6 до 10-81/ч.
Важный количественный показатель надежности - среднее время безотказной работы (средняя наработка до отказа), которое определяется как математическое ожидание времени работы до отказа. Эту характеристику находят как
(4)где ti, - время безотказной работы i-го изделия (для восстанавливаемых изделий - время работы между двумя соседними отказами). Для экспоненциального закона надежности
Средняя наработка до отказа Т и интенсивность отказов λ удобны в качестве справочных данных, так как они не зависят от времени.В ряде случаев для оценки безотказности устройства используется такая характеристика, как гамма процентная наработка до отказа Тλ , т. е. наработка, в течение которой отказ устройства т возникает с вероятностью γ, выраженной в процентах. Соответствующее значение находят из уравнения
(5)Например. Т90% означает, что указанное время наработки до отказа реализуется с вероятностью P(T90%,) = 0,9. т. е. указанное время будет достигнуто для 90% изделий.
Справочные данные обычно приводятся для одиночных элементов в нормальных условиях эксплуатации. Реальные условия эксплуатации могут отличаться от нормальных, а устройства, надежность которых надо определить, содержат большое число различных элементов.
Влияние условий эксплуатации (электрических режимов, температуры, радиации, влажности вибрации и ударов) проявляется в изменении интенсивности отказов, определяемом опытным путем. Утяжеление условии существенно повышает интенсивность отказов. Например, увеличение рабочего напряжения на конденсаторе на 10% может повысить λ1 более чем вдвое.
Способы соединения элементов и узлов, связей между ними разнообразны. Обычно выделяют основное и резервное соединения. Соединение, когда отказ любого из элементов приводит к отказу всего устройства, называют основным (например, бытовая аппаратура). Модель расчета надежности для такого соединения - последовательная цепочка элементов, когда работоспособному состоянию устройства соответствует исправность P первого, P второго,..., P n-го элементов. Вероятность исправного состояния системы, содержащей n элементов:
В этом причина низкой надежности сложных систем с большим числом элементов: если Р = 0,999, а n = 1000, то Рс = 0,37. Другие показатели надежности для основного соединения элементов выводят из формулы произведения вероятностей:
Найдем показатели надежности нашей разработанной схемы. Из справочника знаем λi равно конденсаторов 0,25*10-6 и интегральной микросхемы 0,06*10-6 . Найдем λс для всех элементов схемы. Расчеты представлены в табл. 3.
Таблица 3
№ | Элемент | Кол-во, N | λmin | λave | λmax | N * λmin | N * λave | N * λmax |
1 | Интегральные микросхемы | 47 | 0,046*10-6 | 0,06*10-6 | 0,072*10-6 | 2,162*10-6 | 2,82*10-6 | 3,384*10-6 |
2 | Конденсаторы | 6 | 0,2*10-6 | 0,25*10-6 | 0,3*10-6 | 1,2*10-6 | 1,5*10-6 | 1,8*10-6 |
Итого: | 3,362*10-6 | 4,32*10-6 | 5,184*10-6 |
По вычисленным значениям ∑ λmin , ∑ λave, ∑ λmax, строим графики зависимостей P(t) в полулогарифмическом масштабе. Вычисленные значения представлены в таблице 4.