Смекни!
smekni.com

Производительность мультисервисного узла доступа (стр. 3 из 5)

Анализируем, как и какие группы сети больше всего загружают систему для рассчитываемых длин пакетов. Для этого формируем таблицу 5 и строим диаграмму рисунок 2.

Таблица 5 - Количество передаваемых пакетов в секунду для трех групп пользователей

Количество передаваемых пакетов в секунду, *109
G.711u G.723m
1 группа (p1),% 45·106 29,7·106
2 группа (p2),% 12,57·107 89,5·107
3 группа (p3),% 7,014·109 71,25·109

Рисунок 2 - Доля передаваемых пакетов тремя группами

Вывод о загрузке системы пользователями трех групп.

Из графика видно, что наибольший передаваемый трафик идет на первую группу при кодеке G.711uи вторую при кодеке G.723m.

Задание 2

Расчетная часть: а) рассчитать среднее время задержки пакета в сети доступа; б) рассчитать интенсивность обслуживания пакета при норме задержки

= 5 мс для двух типов кодеков; в) построить зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа; г) определить коэффициент использования системы для случаев с различными кодеками; д) построить зависимости при помощи прикладной программы MathCad.; ж) сделать выводы по задачам 1 и 2.

2.1 Выполнение задания 2

Требования к полосе пропускания определяются гарантиями качества обслуживания, предоставляемыми оператором пользователю. Параметры QoSописаны в рекомендации ITUY.1541. В частности, задержка распространения из конца в конец при передаче речи не должна превышать 100 мс, а вероятность превышения задержки порога в 50 мс не должна превосходить 0,001, т.е.

, мс

p{tp> 50 мс} ≤ 0.001

Задержка из конца в конец складывается из следующих составляющих:

tp= tпакет + tад + tcore+ tбуф

где tp - время передачи пакета из конца в конец;

tпакет - время пакетизации (зависит от типа трафика и кодека);

tад - время задержки при транспортировке в сети доступа;

tcore - время задержки при распространении в транзитной сети;

tбуф - время задержки в приёмном буфере.

Из таблицы 6 видно, что применение низкоскоростных кодеков "съедает" основную часть бюджета задержки. Задержка в приёмном буфере также велика, поэтому на сеть доступа и транспортная сеть должны обеспечивать минимальную задержку.

Допустим, что задержка сети доступа не должна превышать 5 мс. Время обработки заголовка IP-пакета близко к постоянному. Распределение интервалов между поступлениями пакетов соответствует экспоненциальному закону. Поэтому для описания процесса, происходящего на агрегирующем маршрутизаторе, можно воспользоваться моделью M/G/1.

Для данной модели известна формула, определяющая среднее время вызова в системе (формула Полячека - Хинчина) /9/.

где

j - средняя длительность обслуживания одного пакета;

- квадрат коэффициента вариации,
0,2;

j - параметр потока, из первой задачи Nå_секj;

j - среднее время задержки пакета в сети доступа,
= 0,005 с.

Ненулевой коэффициент вариации учитывает возможные отклонения при использовании в заголовках IPполей ToS. Кроме того, время обработки IP-пакета в значительной мере зависит от используемых на маршрутизаторе правил обработки. Из формулы (2.17) следует зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа.

Построим данные зависимости при помощи прикладной программы MathCad.

Рисунок 3 - Зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа для кодека G.711u

Рисунок 4 - Зависимость максимальной величины для средней длительности обслуживания одного пакета от среднего времени задержки в сети доступа для кодека G.723m

Интенсивность обслуживания связана со средним временем задержки пакета в сети доступа обратно пропорционально:

Рассчитали по формулам 2.18 и 2.19 среднее время задержки в сети доступа и интенсивность обслуживания при норме задержки

= 5 мс для двух типов кодеков.

Время tjдолжно выбираться как минимальное из двух возможных значений. Первое значение - величина, полученная из последней формулы. Второе значение - та величина, которая определяется из условия ограничения загрузки системы - r. Обычно эта величина не должна превышать 0,5.

узел доступ телефония сеть

При среднем значении задержки в сети доступа 5 мс коэффициент использования равен:

При таком высоком использовании малейшие флуктуации параметров могут привести к нестабильной работе системы. Определим параметры системы при её использовании на 50%. Средняя длительность обслуживания будет равна

Определим интенсивность обслуживания при этом:

,

Задержка в сети доступа рассчитывается по формуле:

, (секунд)

Рассчитывать вероятность s (t) =

при известных λ и τ нецелесообразно, т.к. в Y.1541 вероятность P{t>50мс} < 0.001 определена для передачи из конца в конец.

При известном среднем размере пакета hjопределить требуемую полосу пропускания:

jj= βj×hj (бит/с)

Сравним полученные результаты (рисунок 5).

Рисунок 5 - Требуемая полоса пропускания

Из графика видно, что для передачи одной и той же информации, то есть одного объема при использовании услуги TriplePlay, необходима различная полоса пропускания. В нашем случае при использовании кодека G.711uс длиной пакета 160 бит необходима большая полоса пропускания, чем при использовании кодека G.723mс длиной пакета 15.7 бит.

Предположим, что в структурном составе абонентов отсутствуют группы пользователей, использующие видео, т.е. p»p2+p3. При этом в вышеприведённом анализе следует опустить расчёт числа пакетов, возникающих при использовании сервисов высокоскоростной передачи данных и видеоуслуг.

Число генерирующих пакетов, возникающих в ЧНН, будет равно

где Ntel - число пакетов телефонии, генерируемое всеми пользователями в час наибольшей нагрузки;

Nint - число пакетов интернета, генерируемое второй группой пользователей в час наибольшей нагрузки

p - доля пользователей группы 2 в общей структуре абонентов

nj - число пакетов, генерируемых в секунду одним абонентом при использовании кодека G.711;