1. Использование программы оптимизации для минимизации функции
2. После завершения итераций инвертирование всех полюсов и нулей, оказавшихся вне единичного круга. После этого продолжение оптимизации для нахождения нового минимума
4. Описание метода синтеза фильтра
При разработке современных систем (в том числе и цифровых фильтров) возникает задача оптимального проектирования. Под этим термином понимается процесс разработки наилучшего, оптимального устройства (в каком-то смысле), как правило с помощью ЭВМ. Большинство методов оптимизации являются итерационными по своей природе.
Как было уже сказано, большинство методов оптимизации, в том числе и методов безусловной оптимизации, носит итерационный характер. Это значит, что начиная с какой-либо точки х0, называемой начальным приближением, алгоритм оптимизации генерирует последовательность точек х1, х2,…хn, которая в принципе должна сходиться к точке
Вектор
В основу всех методов оптимизации положено следующее правило: значение целевой функции от итерации к итерации должно убывать. То есть должно выполняться следующее условие:
Данное условие называется условием спуска.
Методы оптимизации, которые удовлетворяют этому условию, называются допустимыми или методами спуска. Основу всех методов спуска составляет следующая модельная схема:
1. к=0, выбирается начальное приближение
2. Проверяются критерий останова. Если критерий выполняется, то расчеты прекращаются и точка
3. Рассчитывается ненулевой n-мерный вектор
4. Вычисляется малое положительное число
5. Выполнение к-той итерации
Шаг 4 в модельной схеме предполагает решение задачи одномерной минимизации – нахождение длины шага hk. Чтобы решить эту задачу, необходимо, чтобы вектор
В модельной схеме значение целевой функции F(x) убывает от итерации к итерации. Тем не менее монотонно убывающая последовательность {F(x)} может не сойтись к минимуму по следующим причинам:
1. Как бы хорошо не выбиралось направление
2. Решение не удастся получить, если алгоритм расчета направления поиска
Следовательно, для того, чтобы получить гарантированно сходящуюся последовательность в соответствии с модельной схемой необходимо, чтобы длина шага hk обеспечивала бы существенное убывание целевой функции от итерации к итерации и, чтобы угол между вектором-градиентом и направлением поиска на каждой итерации был больше 90 градусов.
Помимо этих двух требований для обеспечения сходимости модельной схемы необходимо еще одно условие, которое накладывается на множество уровней целевой функции. Для функции F(x) и числа
Таким образом, если
· функция F(x) непрерывна и дважды дифференцируема;
· ее множество уровней ограничено и замкнуто;
· функция F(x) существенно убывает от итерации к итерации и на каждом шаге угол между вектором-градиентом и направлением поиска всегда не равен 90 градусам на фиксированную положительную величину,
то алгоритм модельной схемы генерирует последовательность точек, для которых справедливо
Сходимость такого рода называется глобальной, так как она не предполагает близости начального приближения точки
Четвертый шаг модельной схемы предполагает вычисление длины шага, то есть скалярной величины
Для того, чтобы выбрать
Чем точнее будет находиться минимум функции
Для нахождения минимума
1. Эффективные методы одномерного поиска (метод Золотого сечения и метод Фибоначчи);
2. Методы полиномиальной интерполяции (Пауэлл, Ньютон, сплайн-интерполяция).
Для конкретизации модельной схемы помимо процедуры вычисления длины шага hk необходимо также задавать алгоритм расчета требуемого направления поиска
В отличие от одномерного случая, где возможно всего лишь два направления движения ( вперед и назад), уже в двумерной задаче множество направлений поиска является бесконечным.
В этом случае возникает проблема выбора направления поиска