Смекни!
smekni.com

Разработка систем передачи информации нового поколения (стр. 6 из 15)

2.5 Выбор оптического волокна для проектируемой ВОЛС

Волокно SF. В начале 80-х годов передатчики на длину волны 1550 нм имели очень высокую цену и низкую надежность и не могли конкурировать на рынке с передатчиками на длину волны 1300 нм. Поэтому стандартное ступенчатое волокно SF (рис. 2.13 а) стало первым коммерческим волокном и сейчас наиболее широко распространено в телекоммуникационных сетях. Оно оптимизировано по дисперсии для работы в окне 1310 нм, хотя и дает меньшее затухание в окне 1550 нм.

Волокно DSF. По мере совершенствования систем передачи на длине волны 1550 нм встает задача разработки волокна с длиной волны нулевой дисперсии, попадающей внутрь этого окна. В итоге в середине 80-х годов создается волокно со смещенной дисперсией DSF, полностью оптимизированное для работы в окне 1550 нм как по затуханию, так и по дисперсии. На протяжении многих лет волокно DSF считается самым перспективным волокном. С приходом более новых технологий передачи мультиплексного оптического сигнала большую роль начинают играть эрбиевые оптические усилители типа EFDA, способные усиливать многоканальный сигнал. К сожалению, более поздние исследования (в начале 90-х годов) показывают, что именно длина волны нулевой дисперсии (1550 нм), попадающая внутрь рабочего диапазона эрбиевого усилителя, является главным потенциальным источником нелинейных эффектов (прежде всего, четырехволнового смешивания), которые проявляются в резком возрастании шума при распространении многоканального сигнала.

Дальнейшие исследования подтверждают ограниченные возможности DSF при использовании в системах WDM. Чтобы избежать нелинейных эффектов при использовании DSF в WDM системах, следует вводить сигнал меньшей мощности в волокно, увеличивать расстояние между каналами и избегать передачи парных каналов (симметричных относительно l0).

Четырехволновое смешивание - это эффект, приводящий к рассеянию двух волн с образованием новых нежелательных длин волн. Новые волны могут приводить к деградации распространяемого оптического сигнала, интерферируя с ним, или перекачивать мощность из полезного волнового канала. Именно из-за эффекта четырехволнового смешивания стало ясно, что необходимо разработать новый тип волокна, в котором l0 располагалось бы вдали, то есть, по одну сторону (левее или правее) от всех возможных каналов.

Волокно NZDSF создается в начале 90-х годов с целью преодолеть недостатки волокна DSF, проявляющиеся при работе с мультиплексным оптическим сигналом. Известное также как л-смещенное волокно, оно имеет особенность в том, что длина волны нулевой дисперсии вынесена за пределы полосы пропускания эрбия. Это уменьшает нелинейные эффекты и увеличивает характеристики волокна при передаче DWDM сигнала.

Рисунок 2.14 Хроматическая дисперсия волокон в окне 1550 нм.

Две марки л- смещенного волокна, появившиеся несколько лет назад, широко используются сегодня:

- волокно TrueWave фирмы LucentTec., и волокно SMF-LS фирмы Corning. Оба имеют ненулевую дисперсию во всем диапазоне полосы пропускания эрбия. Волокно TrueWaveобеспечивает положительную дисперсию при точке нулевой дисперсии в районе 1523 нм, в то время как SMF-LS обеспечивает отрицательную дисперсию с точкой нулевой дисперсией чуть выше 1560 нм. В начале 1998 года фирма Corning выпустила еще одну марку л- смещенного волокна – LEAFтм.

Сравнительный анализ основных характеристик волокон TrueWave, SMF-LS и LEAFтм приведен в таблице 2.2.

Таблица 2.2 Основные характеристики одномодовых волокон.

Характеристики SMF-28 True –Wave SMF-LS LEAFтм
Max.затухание на длине волны 1550нм(дБ/км) ≤ 0.20 ≤ 0,20 ≤ 0.25 ≤ 0.20
Затухание на сухом стыке (дБ) при1550 нм ≤ 0.1 ≤ 0.1 ≤ 0.1 н/д
Хроматическая дисперсия в зоне ненулевой дисперсии
Min (пс/нм*км) н/д 0.8 н/д 1
Max(пс/нм*км) 20 4.6 -3.5 6
Наклон ненулевой дис-персии S0 (пс/(нм 2*нм) н/д ≤ 0.095 ≤ 0.092 н/д
Длина волны ненулевой дисперсии л0 (нм) н/д ≤ 1540 ≥ 1560 н/д
Диаметр поля моды (нм) при 1500нм 10.5 ± 1.06 8.4 ± 0.6 8.4 ± 0.5 9.5 ± 0.5
Кабельная длина волны отсечки лccf (нм) н/д ≤ 1260 ≤ 1260 н/д
Поляризационая модовая дисперсия (пс/√км)

≤ 0.5 при

1550 нм

≤ 0.5 при

1550 нм

≤ 0.5 при

1550 нм

≤ 0.08

н/д- нет данных

По дисперсионнным характеристикам волокно LEAF близко к волокну TrueWave. Главной отличительной чертой этого волокна по сравнению с тремя предыдущими является большая эффективная площадь для светового потока – диаметр модового поля возрос на 1 мкм. Величина этого параметра становится весьма важной для оптимизации систем диапазона 1550 нм. Больший диаметр медового пятна позволяет увеличить уровень мощности излучения вводимого волокна на 2 дБ, сохраняя при этом влияние ряда нелинейных эффектов, в особенности четырехволнового смешивания, на прежнем уровне.

Современные тенденции развития средств телекоммуникационной связи свидетельствуют о перспективности систем передачи по волокну, в которых совмещаются временное мультиплексирование -TDM мультиплексирование (STM-16 на 2,4 Гбит/с и STM-64 на 10 Гбит/с) в пределах одной длины волны и волновое мультиплексирование WDM.

Хотя и последователи технологии волнового мультиплексирования (Lucent, MIT, Fujitsu и др.) уже широко тестируют в рамках испытательных сетей мультиплексирование 32 и более каналов в расчете на одно волокно, добившись уже скорости передачи 40 Гбит/с на расстояния в несколько сотен км, в ближайшей перспективе видится меньшее количество мультиплексных каналов (до 16 при скорости передачи до 2,4 и 10 Гбит/с) в крупномасштабном индустриальном применении в телекоммуникационных сетях.

Инсталляция новых кабельных сегментов, или наращивание существующих с учетом перехода на скорости передачи 2,4 и 10 Гбит/с может осуществляться с использованием трех перечисленных видов волокон. При выборе волокна следует учитывать такие факторы, как общая стоимость проекта, требуемые емкости каналов, надежность, сложность системы и др.

В контексте эволюции ВОЛС ключевыми параметрами становятся методики, используемые для коррекции дисперсии в волоконно-оптических системах. Коррекция дисперсии позволяет увеличивать длину волоконно-оптических TDM систем, ранее ограниченных из-за большой дисперсии, и одновременно избежать влияния такого эффекта, как четырехволновое смешивание. Три методики коррекции дисперсии:

-использование волокон с компенсирующей дисперсией DCF (dispersion-compensatingfibers). Положительная дисперсия, накопленная на одном участке с использованием стандартного волокна SF, может компенсироваться последующим примыкающим сегментом на основе волокна DCF с заранее подобранным значением отрицательной дисперсии, в результате чего итоговая хроматическая дисперсия может быть приближена к нулю. Компенсация хроматической дисперсии допустима в силу систематического характера накопления дисперсии с ростом длины;

-использование оптических лазерных передатчиков с очень узкой спектральной шириной (0,1 нм и менее), способных модулировать излучение на частотах в несколько ГГц;

-использование волокон типа NZDSF, в которых "сдвигается" длина волны нулевой дисперсии за пределы окна 1550 нм, в результате чего дисперсия становится достаточно большой, чтобы подавить эффект четырехволнового смешивания, в то же время достаточно малой, чтобы поддерживать распространение сигнала высокой емкости (высокой частоты модуляции) на большие расстояния.

Сегменты на основе волокна SF без использования коррекции дисперсии допускают протяженность до 90 км (при скорости передачи 2,4 Гбит/с). Первые две методики коррекции дисперсии, применяясь отдельно друг от друга или в комбинации, позволяют увеличить протяженность сегментов до 140 км при сохранении прежней скорости передачи, табл. 2.3.

Чтобы удовлетворить рабочим требованиям при планировании сети, следует тщательно вырабатывать стратегию наращивания сети. Нужно оценивать соответствующие топологии сетей с учетом возможности их работы на скоростях 2,4 и 10 Гбит/с. Ближайшая цель - построить протяженные участки (до 120-140 км) при передаче на скорости 2,4 Гбит/с с использованием любых из трех главных типов волокон - должна рассматриваться совместно с планами более далекой перспективы - инсталляция линий на скорость передачи 10 Гбит/с с использованием последовательно установленных линейных усилителей. Высокая скорость передачи в последнем случае может быть достигнута путем оптимизации длины сегментов между линейными усилителями (приблизительно 70 км).

Хотя волокна SF и DSF вполне приемлемы для осуществления наращивания сегментов сетей, волокно NZDSF более перспективно при использовании в новых инсталляциях. При сравнении волокон SF и DSF отметим, что SF лучше подходят для сетей, использующих волновое мультиплексирование. Недостаток SP - большое значение дисперсии в окне 1550 нм -может компенсироваться либо дополнительным участком на основе волокна с компенсирующей дисперсией, либо путем уменьшения спектральной ширины излучаемого сигнала (например, используя передатчики на основе DFB лазеров).