Содержание
Введение
Каналы связи и интерфейсы
Приборные интерфейсы
Машинные интерфейсы
Заключение
Литература
Список сокращений
АЦП - аналого-цифровой преобразователь
ВИП - вторичный измерительный преобразователь
ИВК - измерительно-вычислительный комплекс
ИИС - измерительная информационная система
ИК - измерительный канал
ИО - исследуемый (измеряемый) объект
МО - метрологическое обеспечение
(Н) МХ - (нормируемые) метрологические характеристики
ПИП - первичный измерительный преобразователь (датчик)
ПК - персональный компьютер
ПМО - программно-математическое обеспечение
САК - системы автоматического контроля
СИ - средства измерений
СКО - среднеквадратичное отклонение (стандартное отклонение)
ЦАП - цифро-аналоговый преобразователь
ЭВМ - электронная вычислительная машина
Тема контрольной работы по дисциплине "Информационные измерительные системы" "Каналы связи и интерфейсы".
Появление ИИС обусловлено в первую очередь конкретными задачами производства и научных исследований, требующих получения, обработки, отображения и хранения больших объемов измерительной информации. Практическое решение этих задач оказалось возможным благодаря бурному развитию вычислительной техники и измерительной техники, в частности первичных измерительных преобразователей (датчиков). В настоящее время электроника и вычислительная техника настолько изменили ИИС, что ряд проблем, которые отмечались в фундаментальной книге М.П. Цапенко [45] как предмет будущих исследований, оказались в основном разрешенными. Например, быстродействие и объемы памяти современных электронных вычислительных машин (ЭВМ) не лимитируют реализуемость самых сложных измерительных задач. Это дало возможность использовать для обработки информации алгоритмы, практически нереализуемые на малых ЭВМ 20-30 лет назад. Серийно выпускаемые датчики позволяют использовать электрические методы измерения всех физических величин. При этом стоимость средств вычислительной техники, измерительных преобразователей и других компонентов ИИС снизилась до уровня, делающего экономически целесообразным применение ИИС в производстве, научных исследованиях и мониторинге самых различных объектов. Поэтому в настоящее время ИИС применяются практически повсеместно. Они позволяют решать задачи, недоступные для других средств измерения, и обеспечивают высокий уровень автоматизации процесса измерений, высокую достоверность получаемых результатов, высокоинформативную и удобную индикацию результатов.
ИИС являются симбиозом аппаратных средств и алгоритмов обработки измерительной информации. Поэтому как проектирование ИИС, так и их применение невозможны без правильного теоретического обоснования и понимания этих алгоритмов. При этом, благодаря наличию в составе ИИС ЭВМ, возможна дальнейшая обработка результатов измерений, полученных путем обработки первичной измерительной информации. Это позволяет решать с помощью ИИС широкий спектр других задач, не являющихся чисто измерительными, в частности контроль качества, распознавание образов и др.
Организацию связи для любых применений, в том числе и в ИИС, следует рассматривать в различных аспектах [4, 29]: аппаратная реализация каналов, структура системы связи и обеспечение информационной совместимости источников и потребителей информации (интерфейсы).
Аппаратно используются в основном три вида каналов:
проводные каналы, применяемые в локально сосредоточенных ИИС, когда длина каналов не превышает десятков метров;
радиоканалы, в основном в УКВ диапазоне с частотной модуляцией, к которым примыкают и мобильные телефонные каналы;
оптоволоконные каналы.
Радиоканалы и оптоволоконные каналы используются в пространственно распределенных ИИС. Оптоволоконные каналы более помехоустойчивы и имеют меньшую стоимость. Однако радиоканалы удобнее для связи с перемещающимися объектами. Эти два вида каналов используются и в телеизмерительных системах, которые по определению являются пространственно распределенными.
В рамках одной ИИС могут использоваться различные каналы; например, активные ПИП, не формирующие никакого выходного сигнала, могут быть связаны с ВИП только проводами. В этой системе для связи АЦП как с вторичными преобразователями, так и с ЭВМ могут использоваться каналы других видов.
В зависимости от того, какой параметр несущего сигнала используется для передачи информации, различают следующие виды систем передачи:
системы интенсивности, в которых несущим параметром является значение тока или напряжения;
частотные (частотно-импульсные), в которых передаваемая величина меняет частоту синусоидального сигнала или частоту следования импульсов;
канал связь интерфейс информация
времяимпульсные, в которых несущим параметром является длительность импульсов; к ним же относятся фазовые системы, в которых передаваемая величина меняет фазу синусоидального сигнала или сдвиг во времени между двумя импульсами;
кодовые (кодоимпульсные), в которых передаваемая величина передается какими-либо кодовыми комбинациями.
Системы интенсивности подразделяются на системы тока и системы напряжения в зависимости от того, какой вид сигнала используется для передачи информации по проводным каналам. Эти системы, передающие аналоговые сигналы, имеют сравнительно низкую помехоустойчивость, что приводит к дополнительным погрешностям передаваемой информации. Такие системы наиболее часто используются для связи первичных и вторичных преобразователей и для связи последних с АЦП. При этом приходится применять обычные методы повышения помехоустойчивости: использование витых пар и экранированных проводов, постановка блокировочных конденсаторов, развязка земли и нулевого провода и т.д.
Частотные, времяимпульсные и кодовые системы передачи имеют существенно большую помехоустойчивость и практически не вносят погрешности в передаваемую информацию.
При согласовании информационных потоков и пропускной способности каналов широко используются методы теории информации [29], которая появилась именно в связи с потребностями теории связи. При этом следует с осторожностью применять теоретико-информационные понятия в тех сферах, для которых они не предназначены, например при оценке неопределенности результатов измерения.
Как видно из сказанного, ИИС в настоящее время проектируются на основе агрегатного (модульного) принципа, в соответствии с которым устройства, входящие в систему, представляют собой отдельные самостоятельные изделия (приборы, блоки). Для обозначения унифицированных систем сопряжения устройств, участвующих в обмене информации, используется термин интерфейс. Под интерфейсом (или сопряжением) понимают совокупность схемотехнических средств, обеспечивающих непосредственное взаимодействие составных элементов системы. Понятие интерфейса в принципе применимо и к системам интенсивности. Однако в этом простейшем случае оно включает в себя лишь требования к уровням сигналов и входным и выходным импедансам устройств приема-передачи. Основное же применение это понятие находит при организации передачи информации в кодовых системах. В этом случае различают два понятия: интерфейсные системы и интерфейсные устройства.
Под интерфейсной системой понимают совокупность логических устройств, объединенных унифицированным набором связей и предназначенных для обеспечения информационной, электрической и конструктивной совместимости. Интерфейсная система также реализует алгоритмы взаимодействия функциональных модулей в соответствии с установленными нормами и правилами.
Интерфейсные устройства подсоединяются к шине системы сопряжения и объединяются по определенным правилам, относящимся к физической реализации сопряжения. Конструктивное исполнение этих устройств, характеристики вырабатываемых и принимаемых блоками сигналов и согласование их последовательности во времени позволяют упорядочить обмен информацией между отдельными блоками.
Используются два подхода к организации взаимодействия элементов системы и построению материальных связей между ними:
жесткая унификация и стандартизация входных и выходных параметров элементов системы;
использование функциональных блоков с адаптивными характеристиками по входам-выходам.
Применение развитых стандартных интерфейсов при организации ИИС позволяет обеспечить быструю компоновку системы и разработку программ управления.
Между блоками ИИС осуществляется обмен информационными и управляющими сообщениями. Информационное сообщение содержит сведения о значении измеряемой величины, диапазоне измерения, времени измерения, результатах контроля состояния ИК и др. Управляющее сообщение содержит сведения о режиме работы блоков, о последовательности выполнения ими операций и др.
Наиболее распространенные интерфейсы определены международными, государственными [11] и отраслевыми стандартами.
Существует четыре основных признака классификации интерфейсов:
способ соединения элементов системы (магистральный, радиальный, цепочечный, комбинированный);
способ передачи информации (параллельный, последовательный, параллельно-последовательный);
принцип обмена информацией (асинхронный, синхронный);
режим передачи информации (двусторонняя одновременная передача, двусторонняя поочередная передача, односторонняя передача).
В цепочечной структуре каждая пара источник-приемник соединена попарно линиями от выходов предыдущих блоков к входам последующих, и обмен данными происходит непосредственно между блоками. Функции управления распределены между соседними устройствами. Цепочечную структуру интерфейсов используют, как правило, в несложных системах с несколькими функциональными устройствами. Если ИК не имеют общих аппаратных элементов, то соединение элементов каждого канала целесообразно организовывать по цепочечной структуре.