Смекни!
smekni.com

Структурный синтез активных фильтров ВЧ и СВЧ диапазонов (стр. 4 из 6)

– для звена ПФ

, (41)

. (42)

Таким образом, уровни динамических диапазонов звеньев определяются следующими соотношениями:


, (43)

. (44)

Поэтому

(45)

звеньев с дополнительными цепями в

раз больше, чем в R-фильтрах.

В качестве примера реализации звена второго порядка с единственным конденсатором (RC/2-звенья) рассмотрим полосовой фильтр на базе ОУ с указанными в табл. 2 параметрами. На рис. 5 приведены результаты моделирования схемы для различной добротности. Как видно из соотношений (41), это достигается изменением постоянной времени RC-цепи (рис. 4б) в относительно широких пределах.

Для указанного набора параметров полоса звена –

и Q выполнено моделирование схем во временной области (рис. 6, 7, 8) при подаче различных уровней гармонического сигнала в полосе пропускания. Анализ длительности переходных процессов показывает, что схема остается линейной при условии, что выходное ее напряжение не превышает граничное напряжение ОУ (табл. 2). Однако различия скорости нарастания выходного напряжения (
) ограничивают максимально достижимое выходное напряжение схем. Основные характеристики звена приведены в табл. 4.

электронный усилитель частотный операционный


Таблица 4

Основные характеристики RC/2-звена полосового типа

,

(%)

,

(МГц)

,

(%)

Q

Q,

(%)

,

(мВ)

,

(дБ)

30,55 1 364 10 10,8 49 82 45
12,74 45 484 6,2 6,66 37 82 40
4,73 56 657 13,3 3,55 14 100 36
Примечание.
– гарантированное затухание сигнала в полосе заграждения фильтра.

Приведенные в табл. 4 погрешности реализации основных параметров связаны, как показывают дополнительные исследования, с влиянием паразитной входной емкости и вторым полюсом промежуточного каскада ОУ. Это, в частности, подтверждается результатами моделирования схемы звена ФНЧ (рис. 4а), где в силу параллельности основного каскада обратной связи аналогичные отклонения достигают 100 %, а влияние выходного сопротивления существенно уменьшает гарантированное затухание схемы в полосе заграждения.

Рис. 5. Частотные характеристики RC/2-звена полосового типа


Рис. 6. Реакция схемы при Q=3,55 на различные уровни

входного гармонического воздействия

Рис. 7. Реакция схемы при Q = 6,66 на различные уровни

входного гармонического воздействия

Рис. Реакция схемы при Q = 10,8 на различные уровни

входного гармонического воздействия

5. Синтез ФНЧ третьего порядка с дополнительными RC-цепями

Фильтры нижних частот в СВЧ диапазоне образуют отдельный и важный в практическом отношении класс устройств частотной селекции. Достаточно отметить каналообразующие фильтры при синхронной обработке сложных радиотехнических сигналов. В этом случае необходимо не только подавление амплитуд суммарных гармонических составляющих, но и обеспечение линейной фазочастотной характеристики в рабочем диапазоне частот. В общем случае такие фильтры могут быть построены путем каскадирования звеньев второго и первого порядков, однако в ряде практически важных устройств (например, СФ блоков) относительно высокие качественные показатели обеспечиваются применением только одного ОУ с дополнительной RC-цепью второго порядка. При таком подходе получим

, (46)

где D0, Dp – затухание нуля и полюса пассивной цепи.

Структура локальной передачи

имеет относительно простую физическую трактовку. Коэффициент при операторе p обеспечивает, как и в обычных RC-звеньях, компенсацию потерь в пассивной цепи и, следовательно, потенциальное увеличение добротности (Q). Именно такие свойства цепи без дополнительных структурных мер в реальных фильтрах и приводят к пропорциональному Q сдвигу граничной частоты, обусловленному влиянием площади усиления ОУ. Для исключения этой зависимости в структуре
используется дополнительный член p2, который и позволяет получить необходимые для решения общей задачи параметрические степени свободы. Принципиальная схема такого звена показана на рис. 9.

Рис. 9. Принципиальная схема ФНЧ третьего порядка R2C/3 типа

Анализ схемы позволяет определить набор базовых передаточных функций:

, (47)

. (48)

Введем нормировку оператора для перехода к НЧ-прототипу

(49)

и коэффициент сдвига частоты

, (50)

получим

, (51)

. (52)

В диапазоне рабочих частот для АЧХ без явно выраженных пульсаций

, (53)

а

(54)

Таким образом, динамический диапазон схемы определяется следующим соотношением:

(55)

и в основном зависит от возможности минимизации численного значения затухания полюса Dp.

Оценим возможность создания на базе настоящей схемы ФНЧ с линейной фазовой характеристикой. Решение классической аппроксимационной задачи приводит к следующему положению полюсов передаточной функции (51):


. (56)

Следовательно, ее коэффициенты должны принимать значения

, (57)

при этом граничная частота ω0 будет определяться частотой полюса пассивной цепи ωр и площадью усиления П. Для решения задачи необходимо найти соотношения между резистивными и емкостными элементами схемы. Учитывая, что

, (58)

совместное решение (55) и (56) приводит к следующему результату:

, (59)

поэтому, как это видно из (49), (50) и (54), (55),

. (60)

Указанные параметры достаточно близки к оптимальным, т.к. минимальное значение затухания полюса пассивной цепи Dpмин = 3 [6]. Именно поэтому при проектировании указанных фильтров необходимо ориентироваться на ОУ, входные каскады которых имеют относительно большое граничное напряжение

.

Результаты исследования принципиальной схемы ФНЧ третьего порядка на ОУ (табл. 2) с линейной ФЧХ в полосе пропускания приведены в табл. 5.