Смекни!
smekni.com

Структурный синтез устройств с мультидифференциальными операционными усилителями (стр. 5 из 8)

где

;

; (75)

; (76)

(77)

При подаче входного сигнала на неинвертирующий вход первого ОУ на выходах ОУ реализуются следующие передаточные функции:

; (78)

; (79)

. (80)

Таблица 1

Основные правила построения схем

Компенсируемые параметры Функционально-топологический признак Правило построения схемы
Реализация на выходе ОУ переда-точной функции полосового типа Дифференциальный вход ОУ xi соединяется с таким высокоимпедансным входом схемы, который реализует на выходе этого ОУ функцию полосового типа с отрицательным коэффициентом передачи
Реализация на выходе ОУ переда-точной функции нижних частот (вариант 1) Дифференциальный вход ОУ xi соединяется с таким высокоимпедансным входом схемы, который реализует на выходе этого ОУ функцию фильтра нижних частот с положительным коэффициентом передачи
Реализация на выходе ОУ переда-точной функции верхних частот (вариант 2) Дифференциальный вход ОУ xi соединяется с таким высокоимпедансным входом схемы, который реализует на выходе этого ОУ функцию фильтра верхних частот с отрицательным коэффициентом передачи

Рис. 9. Низкочувствительное звено полосового типа

Таким образом, при замене первого ОУ на МОУ можно обеспечить введение в схему двух дополнительных компенсирующих контуров, обеспечивающих уменьшение влияния активных элементов как на частоту полюса, так и на затухание в соответствии с первым вариантом (табл. 1). Принципиальная схема звена с активной компенсацией приведена на рис.

Для этого случая при

; (81)

. (82)

Рис. Низкочувствительное звено полосового типа с активной компенсацией


Следовательно, при идентичности частотных свойств активных элементов их влияние на реализуемые параметры пренебрежимо мало.

Результаты моделирования фильтров, выполненных по схемам рис. 9 и 10, приведены на рис. 11. Эти результаты наглядно показывают преимущество фильтра с активной компенсацией. Так, полосовой фильтр, АЧХ которого представлена кривой, отмеченной символом (à), выполнен на усилителях с частотой единичного усиления f1 = 30 МГц; кривая, отмеченная символом (Ñ), иллюстрирует АЧХ фильтра, выполненного на усилителях с частотой единичного усиления 300 кГц. Частота единичного усиления усилителей фильтра, выполненного по схеме рис. 10, также составляет 300 кГц. Сопоставительную оценку энергетических и других характеристик полосовых фильтров можно провести по данным табл. 2. В частности, выигрыш в токопотреблении полосового фильтра с цепями активной компенсации превышает два порядка при прочих соизмеримых характеристиках.

Рис. 11. Амплитудно-частотные характеристики полосового фильтра

без цепей активной компенсации (Uout2 и Uout3) и при их наличии (Uout1)


Таблица 2

Результаты моделирования R-фильтров

Вариант фильтра df0, % dQ, % dK, % f1 , МГц Iпотр, мА
Рис. 9 0,16 1 0,2 30 3,2
Рис. 9 0,46 24 23,7 2,5 0,052
Рис. 9 4 72 72 0,3 0,027
Рис. 9 0,03 3.3 2 0,3 0,029

Рассматриваемые мультидифференциальные усилители можно также непосредственно использовать и в схемотехнике R-фильтров. R-звенья с собственной компенсацией обеспечивают более высокий динамический диапазон всего устройства, однако их частота полюса непосредственно определяется общим коэффициентом передачи. Снятие указанных структурных противоречий требует применения дополнительной общей отрицательной обратной связи и, следовательно, мультидифференциальных ОУ. Принципиальная схема такого звена приведена на рис. 12.

Рис. 12. Звено R-фильтра с собственной компенсацией

и общей обратной связью

При сохранении оговоренного условия параметры звена определяются из следующих соотношений


(83)

В этом случае локальные передаточные функции, определяющие уровни динамического диапазона схемы, имеют вид

; (84)

, (85)

где

параметры (84) при
.

При выполнении условия идентичности максимальное выходное напряжение будет иметь следующий вид:

. (86)

Анализ модулей локальных функций (85) в диапазоне рабочих частот приводит к следующему результату:

; (87)

. (88)

Именно поэтому при большой добротности (

)

. (89)

Таким образом, введение общей отрицательной обратной связи позволяет реализовать дополнительную параметрическую степень свободы, обеспечивающую необходимый компромисс между различными уровнями динамического диапазона.

6. Мультидифференциальные ОУ в аналоговых интерфейсах и портах ввода

Для обеспечения предметной универсальности СБИС «система на кристалле» необходимо обеспечить возможность использования в РЭА мостовых датчиков различного типа. Именно поэтому входные цепи портов должны обеспечивать высокое подавление синфазного сигнала. Принципиальная схема типового аналогового интерфейса (рис. 13) представляет собой классический инструментальный усилитель на ОУ1–ОУ3 и простейший фильтр нижних частот, действие которого направлено на ограничение спектра в структуре АЦ-преобразования.

Рис. 13. Принципиальная схема интерфейса AD 8555


При идентичности ОУ схема имеет не зависимый от дифференциального коэффициента усиления (К) коэффициент передачи синфазного напряжения (КСН). Однако для этого необходимо согласование всех резисторов при воздействии различных дестабилизирующих факторов. Анализ cхемы приводит к следующим результатам:

, (90)

, (91)

, (92)

где КСС – коэффициент передачи синфазного сигнала ОУЗ;

– статический коэффициент усиления ОУЗ;
,
– относительная погрешность сопротивления резисторов; fГР, f1, – граничная частота инструментального усилителя и частота единичного усиления ОУ1, ОУ2.

Таким образом, для реализации относительно небольшого КСН= - 75 дБнеобходимо обеспечить достаточно высокую точность идентичности сопротивления резисторов порядка 0,01 % при воздействии всего комплекса дестабилизирующих факторов. Иногда для решения этой проблемы используется периодическая настройка схемы за счет изменения коэффициента передачи резистивного делителя. Однако в этом случае возникает дополнительная погрешность:

. (93)

Эта погрешность ограничивает результирующую точность интерфейса. Из (91) следует, что для управления дифференциальным коэффициентом усиления необходимо варьировать сопротивление резистора r при условии согласования его временных и температурных дрейфов с базовым номиналом R. Кроме этого, на выходах ОУ1 и ОУ2 действует достаточно большое синфазное напряжение UC, которое и ограничивает максимальное выходное напряжение схемы и, следовательно, не позволяет использовать низковольтные ОУ.