Смекни!
smekni.com

Структурный синтез устройств с мультидифференциальными операционными усилителями (стр. 6 из 8)

Таким образом, традиционная схема предполагает использование технологически сложно реализуемых резисторов и трех высококачественных, потребляющих от источников питания большую мощность, операционных усилителей. Анализ схем современных ОУ показывает, что 50 % потребляемого ими тока приходится на выходной каскад, а попытки изменить это соотношение приводят к ухудшению многих качественных показателей функциональных устройств. Одним из выходов из сложившегося положения является создание для современной аналоговой микросхемотехники мультидифференциальных ОУ [4, 5].

Структура входных цепей специально созданных МОУ не только обеспечивает относительно высокое ослабление синфазного входного напряжения UC, но и позволяет организовать необходимые для реализации заданного коэффициента передачи автономные контуры обратной связи. Принципиальные схемы непрограммируемого (а) и программируемого (б) инструментальных усилителей показаны на рис. 14.

а) б)

Рис. 14. Принципиальные схемы инструментальных усилителей с МОУ


Для каждой из схем

. (94)

Отличие заключается в способе реализации дифференциального коэффициента усиления:

, (95)

, (96)

где

к – состояние k-го ключа резистивной матрицы R-2R; N – число разрядов матрицы.

В силу того, что суммирование сигналов осуществляется во входных цепях МОУ, удается уменьшить число резисторов схемы и осуществить достаточно простое цифровое управление (рис. 14б) без применения прецизионных базовых номиналов. Однако при этом наблюдается зависимость коэффициента передачи синфазного сигнала от реализуемого коэффициента усиления схемы.

При создании экономичных аналоговых интерфейсов основной проблемой является расширение диапазона рабочих частот, который в первую очередь определяется частотой единичного усиления f1. Решение этой задачи без увеличения потребляемого тока может осуществляться применением принципа собственной компенсации влияния инерционных свойств аналоговых элементов. Вызванное влиянием частоты единичного усиления МОУ приращение передаточной функции любого устройства определяется следующим соотношением


, (97)

где

– площадь усиления i-го МОУ; Fi(p) – передаточная функция, реализуемая на выходе i-го МОУ; Hi(p) – передаточная функция устройства при подаче сигнала на любой неинвертирующий вход; Fii(p) – передаточная функция на выходе i-го МОУ при подаче сигнала на его неинвертирующий вход.

Из приведенного соотношения следует, что при использовании одного активного элемента Fi= Hi=Fii=К, поэтому реализуемое приращение однозначно определяется дифференциальным коэффициентом передачи рассматриваемого устройства. Однако при N=2, 3, …. минимизация указанной погрешности реализации теоретически возможна. При этом перспективными представляются следующие соображения [4]. Во-первых, при i=1 Hi=Kм, поэтому уменьшение влиянияпервого усилителя на общую передаточную функцию возможно только минимизацией Fi=Fii. Во-вторых, для i

1 (второй и последующие каскады усиления) минимизация Hi и Fii может выполняться независимо в пространстве различных пассивных компонентов схемы. С точки зрения уменьшения потребляемого тока наибольший практический интерес представляет случай N=2, который имеет следующие ограничения: F2=H1=K. Следовательно, решение задачи возможно минимизацией F1=F11 и H2=F22 .

Следуя [3], составим матрицы

, (98)

где bij – передача с выхода i-го активного элемента к инвертирующему (-) или неинвертирующему (+) входам j-го ОУ. Отсюда


; (99)

; (100)

, (101)

где

.

Поэтому

; (102)

; (103)

где

.

Таким образом, функции (100), (101) минимизируются при выполнении следующих условий:

. (104)

В этом случае при

получим
. Принципиальная схема инструментального усилителя, соответствующая этим условиям, приведена на рис. 15.

;
;

Рис. 15. Инструментальный усилитель с расширенным диапазоном рабочих частот

Рис. 16. Результаты моделирования АЧХ инструментальных

усилителей с МОУ:

1 – АЧХ рис. 14а; 2 – АЧХ рис. 15


Рис. 17. Влияние дрейфа нуля ОУ на ЭДС смещения инструментального усилителя

Минимизация H2 (

) снижает также вклад ОУ2 не только в собственный шум схемы, но и в смещение нулевого уровня выходного напря-жения. На рис. 16 и 17 приведены результаты испытания устройства при использованиианалогового базового кристалла [7]. Сравнение кривых 1 (АЧХ инструментального усилителя на базе МОУ при К=70) и 2 (инструментального усилителя рис. 14) показывает высокую эффективность использования принципа собственной компенсации для расширения диапазона рабочих частот. На рис. 17 приведена зависимость дрейфа нуля схемы усилителя от приведенного ко входу ЭДС смещения ОУ2. Приведенные результаты показывают, что дрейф нуля и коэффициент ослабления синфазного напряжения определяются только мультидифференциальным операционным усилителем.

Соотношения (90), (94) показывают, что основным преимуществом классической структуры инструментального усилителя (рис. 12) является независимость коэффициента передачи синфазного сигнала от дифференциального коэффициента усиления. Более детальный анализ статической погрешности этой схемы показывает, что:

, (105)

где

– дрейф нуля на выходе схемы;
– дрейф, вносимый i-м уси-лителем.

При обеспечении высокой идентичности элементов дрейф будет оп-ределяться параметрами выходного усилителя:

, (106)

где

– приведенная к входу ЭДС смещения третьего ОУ;
– температурный коэффициент
;
– рабочий температурный диапазон.

Отметим, что для инструментальных усилителей, построенных на основе МОУ, дрейф на выходе будет определяться дрейфом МОУ и коэффициентом усиления схемы:

. (107)

Минимизировать дрейф на выходе инструментальных усилителей можно в рамках структуры с активной компенсацией влияния этих параметров ОУ. Принципиальная схема такого инструментального усилителя приведена на рис. 18.

Рис. 18. Принципиальная схема инструментального усилителя

со взаимной компенсацией дрейфа нуля ОУ


Анализ усилителя приводит к следующим результатам:

; (108)

; (109)

; (110)