Смекни!
smekni.com

Основные проблемы современной аналоговой микросхемотехники (стр. 2 из 4)

Кремниево-германиевая (SiGe) БиКМОП технология занимает лидирующие позиции в области изготовления СБИС для цифровой обработки сигналов, телекоммуникационных систем и многих других важных практических приложений, что обусловлено простотой интеграции в стандартный КМОП процесс, относительно низкой стоимостью производства, боль-шим процентом выхода годных и высоким быстродействием приборов [86]. Крупнейшие компании, такие как IBM, Daimler-Benz, Phillips, Hitachi, сегодня разрабатывают и производят интегральные схемы, основным компонентом которых являются быстродействующие SiGe биполярные транзисторы, с граничными частотами 100 ГГц. Так, компанией IBM было показано, что граничная частота SiGe биполярных транзисторов с гетеропереходом может достигать 210 ГГц. С развитием технологии Si1-xGex-сплавов появилась возможность создания быстродействующих МОП транзисторов с SiGe/Si каналом, что в перспективе позволит создавать на их основе быстродействующие КМОП микромощные схемы с граничными частотами 40–50 ГГц [6].

Важную роль в современной микроэлектронике играют высокотемпературные силовые элементы и преобразователи на базе карбида кремния. Несмотря на значительные инвестиции в этом направлении федеральными правительствами и фирмами ряда стран, ожидаемого результата получить не удалось. Характерные для этого случая зонные процессы приводят к недостаточному качеству малосигнальных параметров приборов.

Результаты отечественных и зарубежных исследований показывают [8], что для создания высоконадежных аналого-цифровых КМОП БИС, для случаев, когда требуются повышенная радиационная стойкость и температурная стабильность, весьма эффективно использование технологии «кремний на изоляторе» (КНИ). По сравнению с традиционной КМОП технологией на объемном кремнии технология КНИ обладает целым рядом важных преимуществ.

Для цифровых КМОП схем эти преимущества можно сформулировать следующим образом [8]:

- очень хорошая изоляция элементов друг от друга и очень малые токи утечки;

- меньшая площадь КМОП КНИ элемента по сравнению с элементом, изготовленным по «объемной» технологии (при отсутствии контакта к подложке);

- меньшие емкости переходов, повышенные частоты работы схем, меньшая потребляемая мощность.

Для аналого-цифровых КМОП схем КНИ технология обеспечивает ряд дополнительных преимуществ [8]:

- высокое качество изоляции цифровых и аналоговых блоков в смешанных АЦ системах на кристалле;

- возможность создания на КНИ подложках высококачественных пассивных R, С, L-элементов;

- меньшие потери переменной мощности в радиочастотном и СВЧ диапазонах;

- большая крутизна ВАХ приборов в области малых токов по сравнению с приборами, выполненными по «объемной» технологии.

Использование технологии «кремний на изоляторе» позволяет повысить верхний диапазон рабочих температур ИС до 200 °С.

субмикронный микросхема блок кристалл

3. Проблемы проектирования микросхем с низковольтным питанием

Последние несколько лет источники питания с напряжением 5 В вытесняются более низковольтными. Требования к уменьшению рассеиваемой мощности и уменьшению числа батарей в таких приложениях, как беспроводные устройства связи и персональные компьютеры, привели к снижению напряжения питания в цифровых схемах до уровня 1,5 В. Эта тенденция была реализована в современных SiGe транзисторах, которые сконструированы так, чтобы обеспечить максимальную частоту среза (f1) в компромиссе с напряжением пробоя (Uпр). Для кремниевых транзисторов

. Таким образом, малые размеры транзисторов, обеспечивающие высокие значения f1 (до 200 ГГц), привели к снижению напряжения питания микросхем.

Уменьшение напряжения питания Еп в цифровых биполярных схемах приводит к появлению новых проблем, и некоторые из них становятся особенно важными при напряжении питания менее 2 В. Принципиальная сложность уменьшения напряжения Еп состоит в том, что биполярный транзистор имеет фиксированное напряжение база-эмиттер Uбэ, которое не сокращается линейно с уменьшением технологических норм, так как

, (1)

где

, Iк – ток коллектора; Is – обратный ток эмиттерного p-nперехода. При этом параметры транзистора и уровни тока оказывают слабое влияние на напряжение Uбэ. На практике плотность тока в биполярном транзисторе (Iк/Is), изменяя свое значение, также слабо влияет на напряжение Uбэ. Если в используемой технологии Uбэ =0,8 В, то применение 1,5 В источника питания приводит к тому, что между «землей» и шиной Еп не может быть включено больше, чем один переход база-эмиттер.

Другая трудность в проектировании низковольтных аналоговых и цифровых схем на биполярных транзисторах состоит в том, что значение амплитуды переключения в типичных ЭСЛ схемах не может определяться произвольно, а минимальное значение ограничено уровнем шума. Биполярная дифференциальная пара (дифференциальный каскад в структуре ЭСЛ) требует, чтобы уровень входного логического сигнала был как минимум 5,5jт. В действительности же, к этому напряжению нужно еще добавить падение напряжения на сопротивлениях в эмиттерной цепи, а также остаточное напряжение при неполном переключении, ограниченном коэффициентом усиления по току, и падение напряжения на шинах питания. Все это приводит к тому, что минимальное напряжение переключения должно составлять несколько сотен милливольт.

Для того чтобы поддерживать высокую скорость работы транзисторов, они не должны входить в «тяжелый» режим насыщения. Это ограничение прямо воздействует на минимальное напряжение коллектор-эмиттер (Uкэ), которое тоже составляет примерно 400 мВ. Учитывая вышесказанное, а также численные значения напряжения Uбэ≈ 800 мВ, можно сделать вывод о том, что запрещается использовать многоярусные дифференциальные пары или каскодные конфигурации (архитектуры) при напряжении питания 1,5 В.

Таким образом, отсутствие возможности масштабирования напряжения на переходе база-эмиттер еще больше обостряет проблему дальнейшего масштабирования напряжения питания схем на биполярных транзисторах. Для КМОП транзисторов такой проблемы не существует в принципе, потому что их пороговое напряжение Uп может быть снижено на стадии производства.

На практике такие неидеальности КМОП транзисторов, как наличие проводимости, при отсутствии приложенного к затвору порогового напряжения (так называемая подпороговая проводимость), зависимость порогового напряжения от температуры, а также эффект короткого канала, приводят к тому, что необходимо для КМОП транзисторов установить пороговое напряжение, равное нескольким сот милливольтам. Это приближает их по статическим характеристикам к биполярным транзисторам.

4. Микросхемотехника аналоговых и аналого-цифровых СФ блоков

Сдерживающим фактором развития СБИС типа «система на кристалле» является несовершенство аналоговой микросхемотехники, которая требует увеличения области кристалла, отводимой на активные и пассивные компоненты цепи, и значительных рабочих токов, обеспечивающих необходимое качество малосигнальных параметров. В этой связи одним из главных направлений в микроэлектронике по-прежнему являются системные исследования в предметных областях, которые должны быть нацелены на воспроизводство новых архитектур контроллеров и микроконверторов, ориентированных на создание соответствующего класса радиоэлектронной аппаратуры, обоснование экономической и технологической целесообразности перераспределения «центра тяжести» между СБИС, датчиками и исполнительными механизмами систем и т.п. [6, 5]. Однако, очевидно, всегда в состав обсуждаемого класса СБИС будут входить достаточно сложные аналоговые и, чаще всего, инициализируемые посредством программируемого ядра блоки, которые и составляют базу «интеллектуального продукта». Здесь следует учитывать еще одно важное в практическом отношении обстоятельство: создание под результаты системных исследований комплекта аналоговых IP блоков позволит выйти на новый принцип организации производства изделий микроэлектронной техники, когда независимо от внутрикристалльной принадлежности функционально законченные устройства обеспечивают более полную аппаратно-программную совместимость нового класса мини-систем. Все это уменьшает номенклатуру изделий микроэлектроники, позволяет согласовать их параметры и характеристики и, что самое главное, упрощает их применение в конкретной аппаратуре [5].

С учетом сказанного можно в настоящее время выделить по крайней мере 4 взаимосвязанные задачи аналоговой микросхемотехники с традиционным функциональным подчинением.

1. Разработка схемотехники микрорежимных узлов элементного базиса с низким влиянием технологических погрешностей изготовления активных компонентов.