Смекни!
smekni.com

Вибір оптимальних варіантів систем методами векторної оптимізації (стр. 3 из 6)

Множину оптимальних оцінок відносно

на просторі
називають множиною Парето-оптимальних (оптимальних за Парето) або ефективних оцінок і позначають
. Включення
має місце тоді і тільки тоді, коли немає оцінок, для яких виконується нерівність
. Такий критерій вибору оптимальних рішень називають безумовним критерієм переваги (БКП) або критерієм Парето.

Проектні рішення, тобто варіанти побудови системи

, для яких справджується включення
називають Парето-оптимальними відносно векторної цільової функції
на множині
і позначають як
. Іншими словами,
тоді і тільки тоді, коли не існує такої системи
, для якої виконується векторна нерівність.

. (3)

Співвідношення (3) означає, що виконуються нерівності

для всіх
і принаймні для одного з показників якості виконується строга нерівність.

Слід зазначити, що відношення строгої переваги

, яке має місце для векторних оцінок, перетворюється при
на відношення
для скалярних оцінок. При цьому Парето-оптимальна оцінка збігається з максимальним елементом множини
, якому відповідає оптимум скалярної цільової функції
. Таким чином, поняття Парето-оптимальності слід розглядати як узагальнення поняття оптимуму на випадок кількох цільових функцій. При цьому оптимум за Парето - це узгоджений оптимум зв'язаних між собою і конкуруючих показників якості системи.

Для Парето-оптимальних проектних рішень характерні такі властивості:

1. Усі елементи множини допустимих варіантів системи

, що не належать до множини Парето-оптимальних
, є безумовно гіршими.

Жодна Парето-оптимальна система змножини

не може бути визнана безумовно гіршою або кращою порівняно з іншою системою цієї множини. Це означає, що всі вони є незрівнянними за критерієм Парето - безумовним критерієм переваги.

3. Якщо множина

узгоджена, тобто містить лише один елемент (систему), то відповідний варіант системи є найкращим.

4. Кожній Парето-оптимальній системі відповідає потенціально можливе значення кожного із показників якості

, що може бути досягнуто за фіксованих, але довільних значень інших
показників якості. Це властивість
-кратного оптимуму. Сукупність таких оптимальних значень показників якості є багатовимірними потенціальними характеристиками системи (БПХ).

5. Оптимальна поверхня, що є геометричним місцем Парето-оптимальних оцінок, має строго монотонний характер, тобто кожна із функцій

,

, (4)

..........................


для Парето-оптимальних оцінок монотонно спадає щодо кожного з аргументів. Ці залежності називаються багатовимірними діаграмами обміну (БДО) для Парето-оптимальних систем.

Порівняно з одновимірними потенціальними характеристиками системи БПХ та зв'язані з ними БДО характеризуються двома важливими властивостями. По-перше, вони дають найкраще (потенціальне можливе) значення не одного, а кожного з обраних показників якості. По-друге, вони вказують, яким чином слід змінити значення одних показників якості для поліпшення інших показників якості і за рахунок якої зміни структури чи параметрів системи це можна зробити.

4 Деякі методи знаходження Парето-оптимальних рішень

Більшість методів знаходження Парето-оптимальних рішень базується на тих чи інших умовах Парето-оптимальності. У загальному випадку використовуються достатні й необхідні умови Парето-оптимальності. Зокрема, рішення є Парето-оптимальним, якщо воно є рішеннями задачі максимізації певної функції, зростаючої за відношенням

. Фактично розв'язання задачі Парето-оптимізації зводиться до множини відповідних задач скалярної оптимізації за деяких обмежень. Якщо використані умови оптимальності є також і достатніми, то знайдена у такій спосіб множина рішень є множиною Парето-оптимальних рішень. У противному випадку, знайдена множина може включати і зайві рішення, що мають бути відкинуті.

Знаходження множини Парето-оптимальних систем може здійснюватися або безпосередньо перебиранням усіх строго допустимих варіантів системи та перевіркою умови (3), або з використанням спеціальних методів, наприклад, методу послідовних поступок, вагового методу, методу робочих характеристик. Вибір відповідного методу оптимізації залежить від змісту сформульованих вихідних даних, типу поставленої задачі проектування. Розглянемо особливості деяких методів.

Метод перебору.При розв'язанні оптимізаційної задачі методом перебору згідно з умовою (3) припускається, що множина

має скінченну потужність. Такі задачі виникають, наприклад, при виборі з уже відомих (“у натурі” або у вигляді технічних проектів) варіантів систем. Зокрема, множина допустимих систем може формуватися на основі відомого морфологічного підходу як різні допустимі комбінації певної кількості підсистем. Тут суттєво зазначити, що навіть для порівняно простих систем, які складаються лише з кількох підсистем, кількість допустимих комбінацій останніх може бути значною (десятки і сотні тисяч). Тому, хоча принципових труднощів при використанні методу перебору не існує, проте на практиці можливі складнощі обчислювального характеру.

Метод робочих характеристик.Метод полягає у тому, що шукається оптимум однієї із цільових, наприклад, першої функції на множині строго допустимих систем при умові, що на всі цільові функції накладаються обмеження типу рівності

, при

, (5)

де

- фіксовані, але довільні значення показників якості.

Очевидно, оптимальне значення показника

у загальному випадку залежатиме від фіксованих значень інших показників якості
. Знайдені у такий спосіб залежності за допустимих комбінацій фіксованих значень
у критеріальному просторі являють собою робочу поверхню. Робочій поверхні відповідає сім'я одновимірних робочих характеристик
виду

,

, (6)

...........................

.

Тут підкреслені змінні, що розглядаються як фіксовані параметри.

Робоча поверхня має такі характерні властивості:

1. Робоча поверхня включає усі Парето-оптимальні точки, але поряд з ними має і ряд безумовно гірших точок. Вони мають бути відкинуті з подальшого розгляду.

Необхідною і достатньою умовою збіжності робочої поверхні з Парето-оптимальною множиною, є її строга монотонність, тобто монотонно спадний характер відносно кожного з аргументів. В цьому випадку робоча поверхня визначає БПХ системи.