Смекни!
smekni.com

Спиральные антенны (стр. 3 из 11)

Диаметр спирали должен быть достаточно велик, чтобы на максимальной волне диапазона

сохранилось первое «резонансное» кольцо (
),а с уменьшением длины волны это кольцо должно сжиматься до тех пор (
), пока оно еще может полностью разместиться вокруг узла питания. Тогда в пределах
отношение среднего периметрапервого «резонансного» кольца
к длине волны
остаетсяпостоянным и тем самым выполняется основное условие сохранения направленныхсвойств антенны в широком диапазоне волн
Правда, направленность арифметической спирали невелика (
60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний периметр, равный
.

Второе условие получения диапазонной антенны—постоянство входного сопротивления — достигается здесь тем, что спираль работает в режиме бегущей волны тока. Это сопротивление активное (100—200 Ом). При питании от коаксиального фидера (

Ом) согласование производят ступенчатым или плавным трансформатором.

Спираль излучает по обе стороны своей оси. Чтобы сделать антенну однонаправленной, ленточную спираль помещают на диэлектрической пластине толщиной

, другую сторону которой металлизируют. Если же спираль щелевая, то ее вырезают на стенке металлического короба; тогда противоположная стенка короба играет роль отражающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.

Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пластине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн

7.5 ... 15 см при
, ширине диаграммы направленности 2
' = 60... 80° и коэффициенте эллиптичности в направлении максимума главного лепестка менее 3 дБ, т. е. практически поляризацию можно считать круговой. Плоские спиральные антенны удобно изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.

1.3 Равноугольная (логарифмическая) спиральная антенна

Широкодиапазонность антенн такого вида основана на том, что если отношение линейных размеров излучателя к длине волны остается постоянным и излучающая структура полностью определяется ее полярными углами, то направленность антенны оказывается абсолютно независимой от частоты.

Рис.1.3.1. Логарифмическая спираль

Равноугольная спираль (рис. 1.3.1) строится в полярных координатах по уравнению


(1.3.1)

где

— радиус-вектор в начале спирали (
); а — коэффициент, определяющий степень увеличения радиус-вектора с увеличением полярного угла
.

Двухзаходная спираль образуется двумя проводниками или щелями, но в отличие от архимедовой спиральной антенны толщина их непостоянна и возрастает с увеличением угла

. Пусть начальный радиус-вектор на внутренней границе 1-го проводника равен
и на внешней
. Тогда уравнениями граничных спиралей являются

(1.3.2)

. (1.3.3)

Для оценки диапазонности логарифмической спирали исследуем зависимость отношения

от угла
. Числитель дроби
,а так как
,

то знаменатель дроби и искомое отношение

,(1.3.4)

где

. Следовательно, изменение длины волны вызывает толькосмещение активной области спирали на некоторый угол
,
а отношение
и направленное действие антенны от этого не меняются.Если бы спираль была бесконечной, то диапазонность антенны была безграничной, но реальная антенна имеет конечную

длину и эффективно работает в ограниченном, хотя и очень широком диапазоне волн

,причем
определяется максимальной длиной спирали, а
— минимальными размерами узла питания.

4.3. Логарифмическая спираль работает в режиме бегущих волн (вследствие излучения ток затухает к концу спирали), и ее входное сопротивление

Ом.

Рис.1.3.2. Щелевая плоская логарифмическая спиральная антенна

Типовая щелевая логарифмическая спираль (рис. 6) имеет максимальную длину ветви 42,3 см, начальный радиус 0,51 см и коэффициент

= 0,303. Антенна излучает волны с вращающейся поляризацией в диапазоне
см и
не превышает двух при питании спирали от 50-Ом коаксиального кабеля. Параметры антенны находятся в допустимых пределах даже при двадцатикратном изменении длины волны.

1.4 Коническая спиральная антенна

Коническая спиральная антенна (рис.1.4.1) состоит из двух металлических полосок, расположенных на поверхности конуса θ=θ0, конфигурация которых дается уравнением

θ=1800

θ=0

Рис.1.4.1 Коническая спиральная антенна

Угол

между радиусом и касательной к спирали равен arctgа. Таким образом, плоская спираль есть частный случай конической при θ = 900.

В случае конуса можно говорить о самодополнительной структуре, имея в виду идентичность участков поверхности конуса, покрытых полоской и свободных от нее. Положение тех и других отличается на угол поворота 900; иначе говоря, ширина ветви δ на рис.1 равна 900. Оказывается, что самодополнительная структура обеспечивает наилучшую диаграмму направленности. Переход к конической форме позволяет выявить одну важную особенность спиральных антенн, которая не могла быть обнаружена при плоской форме спирали: излучение происходит за счет волны, перемещающейся внутрь по направлению к внешней спирали.


Глава 2. Свойства спиральных антенн

2.1 Спиральные антенны и виды волн в них

Спиральныеантенны являются слабо - и средненаправленнымиширокополосными антеннами эллиптической и управляемой поляризации. Они применяются в качестве самостоятельных антенн, облучателей зеркальных и линзовых антенн, возбудителей волноводно-рупорпых антенн эллиптической и управляемой поляризации, элементов антенных решеток.

Спиральные антенны --это антенны поверхностных волн. По виду спирали ''направителя" (замедляющейсистемы) и способу обеспечения работы в широком диапазоне частот их можно разделить на:

---цилиндрические регулярные, у которых геометрические параметры (шаг, радиус, диаметр провода) постоянны по всей длине и широкополосность обусловлена наличием дисперсии фазовой скорости;

--эквиугольные или частотно-независимые (конические, плоские);

--нерегулярные, у которых параметры есть функции координаты вдоль длинны спирали.