Диаметр спирали должен быть достаточно велик, чтобы на максимальной волне диапазона
сохранилось первое «резонансное» кольцо ( ),а с уменьшением длины волны это кольцо должно сжиматься до тех пор ( ), пока оно еще может полностью разместиться вокруг узла питания. Тогда в пределах отношение среднего периметрапервого «резонансного» кольца к длине волны остаетсяпостоянным и тем самым выполняется основное условие сохранения направленныхсвойств антенны в широком диапазоне волн Правда, направленность арифметической спирали невелика ( 60 ... 80°), поскольку в излучении волн участвует, по существу, только та часть спирали, которая имеет средний периметр, равный .Второе условие получения диапазонной антенны—постоянство входного сопротивления — достигается здесь тем, что спираль работает в режиме бегущей волны тока. Это сопротивление активное (100—200 Ом). При питании от коаксиального фидера (
Ом) согласование производят ступенчатым или плавным трансформатором.Спираль излучает по обе стороны своей оси. Чтобы сделать антенну однонаправленной, ленточную спираль помещают на диэлектрической пластине толщиной
, другую сторону которой металлизируют. Если же спираль щелевая, то ее вырезают на стенке металлического короба; тогда противоположная стенка короба играет роль отражающего экрана, а сам короб является резонатором. Чтобы уменьшить его глубину, короб заполняют диэлектриком.Одна из типовых спиралей имеет диаметр 76 мм, выполнена на пластине из эпоксидного диэлектрика, снабжена резонатором глубиной 26 мм, работает в диапазоне волн
7.5 ... 15 см при , ширине диаграммы направленности 2 ' = 60... 80° и коэффициенте эллиптичности в направлении максимума главного лепестка менее 3 дБ, т. е. практически поляризацию можно считать круговой. Плоские спиральные антенны удобно изготовлять печатным способом на тонких листах диэлектрика с малыми потерями на высоких частотах.1.3 Равноугольная (логарифмическая) спиральная антенна
Широкодиапазонность антенн такого вида основана на том, что если отношение линейных размеров излучателя к длине волны остается постоянным и излучающая структура полностью определяется ее полярными углами, то направленность антенны оказывается абсолютно независимой от частоты.
Рис.1.3.1. Логарифмическая спираль
Равноугольная спираль (рис. 1.3.1) строится в полярных координатах по уравнению
где
— радиус-вектор в начале спирали ( ); а — коэффициент, определяющий степень увеличения радиус-вектора с увеличением полярного угла .Двухзаходная спираль образуется двумя проводниками или щелями, но в отличие от архимедовой спиральной антенны толщина их непостоянна и возрастает с увеличением угла
. Пусть начальный радиус-вектор на внутренней границе 1-го проводника равен и на внешней . Тогда уравнениями граничных спиралей являются (1.3.2) . (1.3.3)Для оценки диапазонности логарифмической спирали исследуем зависимость отношения
от угла . Числитель дроби ,а так как ,то знаменатель дроби и искомое отношение
,(1.3.4)где
. Следовательно, изменение длины волны вызывает толькосмещение активной области спирали на некоторый угол , а отношение и направленное действие антенны от этого не меняются.Если бы спираль была бесконечной, то диапазонность антенны была безграничной, но реальная антенна имеет конечнуюдлину и эффективно работает в ограниченном, хотя и очень широком диапазоне волн
,причем определяется максимальной длиной спирали, а — минимальными размерами узла питания.4.3. Логарифмическая спираль работает в режиме бегущих волн (вследствие излучения ток затухает к концу спирали), и ее входное сопротивление
Ом.Рис.1.3.2. Щелевая плоская логарифмическая спиральная антенна
Типовая щелевая логарифмическая спираль (рис. 6) имеет максимальную длину ветви 42,3 см, начальный радиус 0,51 см и коэффициент
= 0,303. Антенна излучает волны с вращающейся поляризацией в диапазоне см и не превышает двух при питании спирали от 50-Ом коаксиального кабеля. Параметры антенны находятся в допустимых пределах даже при двадцатикратном изменении длины волны.1.4 Коническая спиральная антенна
Коническая спиральная антенна (рис.1.4.1) состоит из двух металлических полосок, расположенных на поверхности конуса θ=θ0, конфигурация которых дается уравнением
θ=1800
θ=0
Рис.1.4.1 Коническая спиральная антенна
Угол
между радиусом и касательной к спирали равен arctgа. Таким образом, плоская спираль есть частный случай конической при θ = 900.В случае конуса можно говорить о самодополнительной структуре, имея в виду идентичность участков поверхности конуса, покрытых полоской и свободных от нее. Положение тех и других отличается на угол поворота 900; иначе говоря, ширина ветви δ на рис.1 равна 900. Оказывается, что самодополнительная структура обеспечивает наилучшую диаграмму направленности. Переход к конической форме позволяет выявить одну важную особенность спиральных антенн, которая не могла быть обнаружена при плоской форме спирали: излучение происходит за счет волны, перемещающейся внутрь по направлению к внешней спирали.
Глава 2. Свойства спиральных антенн
2.1 Спиральные антенны и виды волн в них
Спиральныеантенны являются слабо - и средненаправленнымиширокополосными антеннами эллиптической и управляемой поляризации. Они применяются в качестве самостоятельных антенн, облучателей зеркальных и линзовых антенн, возбудителей волноводно-рупорпых антенн эллиптической и управляемой поляризации, элементов антенных решеток.
Спиральные антенны --это антенны поверхностных волн. По виду спирали ''направителя" (замедляющейсистемы) и способу обеспечения работы в широком диапазоне частот их можно разделить на:
---цилиндрические регулярные, у которых геометрические параметры (шаг, радиус, диаметр провода) постоянны по всей длине и широкополосность обусловлена наличием дисперсии фазовой скорости;
--эквиугольные или частотно-независимые (конические, плоские);
--нерегулярные, у которых параметры есть функции координаты вдоль длинны спирали.