Смекни!
smekni.com

Спиральные антенны (стр. 4 из 11)

Спиральная антенна --- это антенна бегущейволы. Волна тока, распространяясь от места возбуждения вдоль провода спирали, доходит до его свободногоконца и отражаетсяв обратном направлении. Подбором геометрии спирали и частоты питающего напряжения можно добиться быстрого спада как падающей, так и отраженной волн тока (рис2.1.1

Рис. 2.1.1


Эти волны интерферируют друг с другом. Так как на большей части провода спирали амплитуда падающей волны значительно превосходит амплитуду волны отраженной, то в результате интерференции распределение амплитуды тока вдоль спирали будет примерно таким, как показано на рис 2.1.2

Рис 2.1.2

В этом случае на большей части провода спирали амплитуда тока будет почти постоянной, а фаза будет изменяться почти по линейному закону т.е. мы можем считать, что на большей части провода спирали имеет место бегущая волна тока. Отсутствие заметной отраженной волны тока в некотором интервале частот обеспечивает достаточно хорошее постоянство входного сопротивления и характеристик направленности в этом интервале.

Но указанными свойствами спиральная антенна обладает только при определенных условиях.

Распространяющаяся вдоль провода спирали бегущая волна тока не может вызвать внутри спирали электромагнитных волн типа H или E, так как это имеет место в волноводе со сплошными проводящими стенками. Благодаря более сложным анизотропным граничным условиям на образующей поверхности спирали указанная волна тока возбуждает внутри спирали электромагнитные волны более сложной структуры. Эти волны принято обозначать символом- Tn где n—число длин волн тока, укладывающихся на окружности витка цилиндра, поверхность которого является образующей спирали.

Характеристики направленности спиральной антенны существенным образом зависят от возбужденного в спирали типа волны.

Это можно наглядно показать, рассмотрев работу спирали с малым углом намотки. Если в спирали имеет место волна T0, то можно считать, что на протяженииодного витка спирали амплитуда, и фаза тока изменяются столь незначительно, что их можно считать постоянными. Поля, созданные на оси спирали симметричными элементами витка, как это видно на рис.1.3, взаимно компенсируют друг друга. Излучение вдоль оси спирали отсутствует. Основной составляющей поля в этом случае является, осевая составляющая.

В направлении, перпендикулярном оси, поля от укачанных элементов витка не будут уничтожать друг друга благодаря разности расстояния от точки наблюдения до каждого из симметричных элементов витка. Но так как эта разность расстояний значительно меньше длины волны, то поле в этом направлении будет слабым, хотя и наибольшим по сравнению с полями в любом другом направлении. Характеристика направленности будет иметь вид, показанный на рис. 2.1.4. Спираль, работающая в таком режиме, применятся в качестве элементов антенны, так же как замедляющая структура в ЛБВ, и кроме того в качестве приемопередаточной антенны сотовых аппаратов

Рис. 2.1.3. Рис,2.1.4.


Если в спирали имеет место волна типа T1, то на каждом витке её тока, оставаясь постоянным по амплитуде, дважды меняет своё направление. Из рис.2.1.5 видно, что в этом случае токи в симметричных элементах витка равны по величине и одинаковы по направлению. Поля от таких элементов в точках, лежащих на оси спирали, будут складываться. Основными составляющими поля спирали становятся поперечные составляющие. Осевая составляющая поля становится незначительной. Излучение в направлении оси будет наибольшим.



Рис .2.1.5. Рис, 2.1.6.

Характеристика направленности примет вид, изображенный на рис.1.6. она состоит из одного почти симметричного относительно оси спирали главного лепестка и нескольких боковых лепестков, уровень которых значительно ниже уровня главного лепестка. Такая форма характеристики направленности обусловлена тем, что спираль в этом режиме представляет собой как бы решетку излучателей, поля которых синфазно складываются в направлении оси.

Подобная формахарактеристики направленности сохраняется в широком диапазоне частот. Это объясняется тем, что изменение фазовой скорости волны тока в этом диапазоне происходит так, что ноля всех витков по-прежнему складываются синфазно в направлении оси спирали. Такой режим работы спирали называется режимом осевого излучения. Ширина главною лепестка характеристики направленности и величина боковых лепестков зависят от числа витков спирали. Главный лепесток тем уже, чем больше число витков.

Если в спирали имеет место волна типа Т2, то на каждом витке спирали ток, оставаясь постоянным по амплитуде, будет менять своё направление четыре раза, как это показано на рис 2.1.7.

Рис.2.1.7 Рис.2.1.8

Токи в симметричных элементахвитка равны по величине и противоположны по направлению. Поперечные составляющие поля на оси спирали будут равны нулю. Излучение вдоль оси спирали отсутствует. Характеристика направленности примет вид, показанный на рис.1.8

Спираль, работающая в таком режиме, широкого применения в качестве антенны пока не нашли.

Аналогичным образом, рассмотрев режимы высших типов волн T3, T4 …, придем к выводу, что характеристики направленности, соответствующие этим режимам, также имеют вид, изображенный на рис.1.8. Спирали, работающие в режимах волн высших типов, применения в качестве антенн также пока не нашли.

Из приведенных рассуждений следует, что наиболее приемлемой характеристикой направленности в случае, когда нужно получить максимальный КНД, обладает спираль, работающая в режиме волны Т1.

Нетрудно показать, что спиральная антенна, работающая в режиме Т1, создает в направлении своей оси излучение круговой поляризации. Физически можно считать, что две ортогональные составляющие поля на оси спирали создаются двумя парами диаметрально противоположных элементов витка спирали. Но так как каждый виток спирали обтекается бегущей волной тока, то токи в этих элементах равны но амплитуде и сдвинуты по фазе на 90°; следовательно, ортогональные поперечные составляющие поля на оси спирали, созданные этими токами, также будут равны по амплитуде и сдвинуты по фазе на 90°, т.е. образуют поле круговой поляризации.

По мере увеличения отраженной волны от открытого конца спирали круговая поляризация излучения вдоль оси переходит в эллиптическую.

Из чисто геометрических соображений видно, что спираль, создающая вдоль оси излучение крутвой поляризации, в других направлениях создает излучение эллиптической поляризации, переходящее по мере удаления от оси в изучение линейной поляризации.

Во всем интервале сущеествования режима Т1, амплитуда волны тока отражённой от открытого конца спирали, остается малой иизменяется незначительно. Это обусловливает относительное постоянство как активной, так и реактивной частей входного сопротивления спиральной антенны, рботаюшей в этом режиме.

Незначительность амплитуды отраженной волны тока от открытого конца спирали, работающей в режиме T1, приводит к тому, что излучение спирали в направлении к ее входу оказывается настолько слабым, что в ряде случаев им можно пренебречь. На металлический экран, расположенный в плоскости входа антенны, падает слабое поле, и его влияние на поле, созданное спиралью в переднем полупространстве, весьма незначительно.

Опыт показывает, что спираль, работающая в режиме Т1 сохраняет относительное постоянство своих характеристик и параметров в более широком интервале частот, чем при работе в других режимах. Регулярная спираль, работающая в таком режиме, нашла наибольшее применение в антенной технике.

2.2 Широкополосность антенн

Как известно, одной из важных характеристик антенны является ее полоса пропускания, т. е. полоса частот, в пределах которой обеспечивается передача (прием) без существенных искажений всего спектра частот передаваемого (принимаемого) сигнала.

В основном ширина полосы пропускания антенны определяется зависимостью ее входного сопротивления от частоты. Эта зависимость приводит к изменению величины относительной амплитуды и фазы напряженности излучаемого поля на. различных частотах спектра сигнала, что при приеме вызывает искажения последнего. При питании антенны фидером изменение ее входного сопротивления вызывает рассогласование, т.е. появление отраженных волн в фидере, что приводит к нелинейности фазовой характеристики фидера и к искажению формы передаваемого или принимаемого сигнала. Особенно существенны искажения широкополосных сигналов (телсвидсние, многоканальная радиорелейная телефонная связь).

В идеальном случае в требуемой полосе частот активная составляющая входного сопротивления- Rвхпостоянна и реактивная сосывляющая – Xвх равна нулю. Добиться этого в достаточно широкой полосе частотпринципиально невозможно, поэтому устанавливают определенные допуски на изменение Rвх и Xвх зависящие от характера передаваемого или принимаемого сигнала.

Зависимость направленных свойств антенны от частоты также влияет наотносительную величину напряженности поля в точке приема на различных частотах спектра передаваемого сигнала, что также может вызвать искажение этого сигнала. Однако, обычно, в пределах требуемой полосы пропускания направленные свойства антенны изменяются мало.