Смекни!
smekni.com

Спиральные антенны (стр. 7 из 11)

Рис.2.4.8

Рис.2.4.9


Согласование в узкой полосе частот можно осуществить с помощью четвертьволнового трансформатора, сопротивление которого рассчитывается по известной формуле

При приеме слабого сигнала, желательно применить согласование в узкой полосе частот.

2.5 Дисперсионное уравнение С. X. Когана

Пусть дисперсионное уравнение С. X. Когана составляется для круглой цилиндрической спирали бесконечной длины из хорошо проводящего круглого провода диаметром 2а0. Диаметр спирали 2а. Спираль равномерной намотки: угол намотки а шаг намотки s. Ось спирали — прямая линия. На толщину провода спирали накладывается условие

. Спираль возбуждается электромагнитными колебаниями, вызывающими в свободном пространстве волны длиною (Рис.2.5.1).

Рис. 2.5.1

Так как рассматривается спираль бесконечной длины, то вдоль провода спирали имеет место только бегущая волна тока. При этом условиивыражение для тока, протекающего через элемент спирали с координатой lcдля данного момента времени, можно записать в виде: где

, (2.5.1)

—где

амплетудное значение тока

постоянная распространения волны тока вдоль провода спирали. Записывается выражение для вектора – потенциала

, (2.5.2)

где с=

м/с

k=

, (2.5.3)

R- расстояние между элемента провода спирали с координатой lc и точкой наблюдения.

Как известно, вектор-потенциал A поля в той же точке пространства связан с вектором Е напряженности электрического поля в той же точке выражением

, (2.5.4)

На поверхности идеально проводящего провода, в силу граничных условий, должно иметь место равенство:

, (2.5.5)

Совместное решение уравнений (2.5.3), (2.5.4) и (2.5.5) приводит к трансцендентному уравнению, содержащему постоянную распространения

волны тока вдоль провода спирали:

Это уравнение и было получено С.К.Когоном в 1949 году:

. (2.5.6)

Решая полученное трансцендентное уравнение графическим способом,- находят величину

и велечину фазовой скорости vпр волны тока, распространяющейся вдоль провода спирали.

Полученное решение позволяет построить аппроксимационные решения для конических конструкций спиральных антенн.


Глава 3. Спиральные антенны в сотовых телефонах

3.1Спиральные антенны в сотовых телефонах

Мы рассмотрим вопросы применения спиральных антенн в сотовых телефонах. Для расчёта и оптимизации основных характеристик антенной системы - диаграммы направленности, диапазона рабочих частот - применяется программа электродинамического анализа IE3D фирмы Zeland (USA). Полученные результаты позволили выработать ряд рекомендаций для увеличения чувствительности сотового телефона.

Спиральные антенны (рис. 3.1.1 и 3.1.2) сейчас являются самыми распространёнными антеннами в сотовых телефонах. Альтернатива им - микрополосковые плоские антенны различных модификаций (PIFA) пока имеют ограниченное применение.

Недостатком внутренних микрополосковых антенн, к сожалению, является необходимость разработки отдельной антенны для каждого типа сотового телефона, что замедляет модернизацию и разработку новых аппаратов. Спиральные антенны универсальны, разрабатываются как отдельный автономный элемент, обычно на входное сопротивление 50 Ом, и это позволяет конструктору выбрать подходящую антенну из широкого набора разработанных спиральных антенн только по частотным характеристикам.

Однако, при выборе готовой антенны возможны потери в характеристиках излучения всей антенной системы из-за того, что корпуса телефонов значительно отличаются друг от друга. Корпус современного телефона имеет размер, соизмеримый с половиной длины волны и поэтому влияющий на характеристики антенны.

Известно, что внешний вид корпуса является важной характеристикой сотового телефона и поэтому способствует разработке и поставке на рынок всё большего количества новых модификаций.

При выборе спиральной антенны конструктору важно выяснить, как она будет работать в новом корпусе. Это особенно важно для двухдиапазонной спиральной антенны, так как влияние корпуса на её характеристики происходит в обоих диапазонах.

Модель корпуса ( рис.3.1.3), его формы и заполнения влияют на точность полученного результата; корпус может быть частично заполнен, покрыт диэлектрическим слоем и металлизирован с внутренней стороны. Реальная форма корпуса изменяет идеальные характеристики антенны, когда можно считать, что её противовес - бесконечная идеально проводящая поверхность.

Для проектирования антенной системы с учётом корпуса желательно представлять методику расчёта самой спиральной антенны. Соображения, положенные в основу разработки геометрии двухдиапазонной антенны, важны, поскольку корпус существенно изменяет её свойства.

Составление электрической эквивалентной схемы позволяет провести эскизный расчёт антенной системы. Такая эквивалентная схема может состоять из параллельно соединённых спирали (двух последовательных её фрагментов) и штыря.

Рассматриваемые антенны имеют два положения штыря: внизу и вверху. Выдвижение штыря увеличивает эффективность излучения антенны на несколько дБ. Но это выдвижение также изменяет согласование и сопротивление излучения.

3.2 Спиральная антенна со штырем и без штыря

Эта классическая комбинация антенн объединяет преимущества несимметричного вибратора и спиральной антенны нормального режима (с излучением перпендикулярно оси).

Эта широко распространённая комбинация оптимально сочетает характеристики в режиме выдвинутого штыря и в нижнем его положении. При этом важно, что спиральная антенна нормального режима более широкополосна, чем несимметричный вибратор.

Верх штыря делается неметаллическим, поэтому при нижнем положении штыря антенна становится просто спиральной в нормальном режиме, то есть с излучением перпендикулярно оси. Чувствительность сотового телефона в этом случае на 1–2 дБ выше, чем при задвинутом штыре.

Штырь имеет металлический конец внизу и соединяется с нижним патроном спиральной антенны, когда штырь вы-двигается в верхнее положение. Электрически штырь подсоединяется параллельно спиральной антенне. Часть штыря-вибратора, проходящая через спиральную антенну, подключена так, что запитывается параллельно спирали. В таком состоянии антенна подстраивается для получения реального входного импеданса в обоих режимах: выдвинутом и вдвинутом.

Эффективность излучающей способности антенны характеризуется, как известно, сопротивлением излучения. А оно зависит от внешней физической длины спиральной антенны и только в небольшой степени от диаметра спирали [1]. Сопротивление излучения несимметричного вибратора меняется как нелинейная функция, в зависимости от длины несимметричного вибратора, Rs ~ 10x²**(1 + 0,19x²), где x = kL, если менять длину L от очень короткой до четверти длины волны. При x = 1,57 это соответствует

/4 штырю с сопротивлением излучения 36Ом. Четвертьволновый диполь с сопротивлением 36Ом имеет слишком малое значение, что непрактично, поскольку очень короткий несимметричный вибратор имеет малую эффективность.

Для всего телефона (антенна + корпус) выражение для сопротивления излучения будет намного более сложное. Сопротивление излучения для всего телефона обычно в несколько раз больше, чем для несимметричного вибратора. При согласовании линии небольшой длины с 50-Ом линией полоса рабочих частот уменьшается пропорционально сопротивлению излучения. Обычно длина спиральной антенны равна 20–40 мм для частоты 900 МГц, а минимальная длина ограничивается полосой (равной 8–10%). Из-за того, что корпус телефона является частью излучающей структуры, подстройка четвертьволнового шлейфа будет зависеть от размера и формы телефона. Длина несимметричного вибратора (штыря) - 40...45 мм.