Смекни!
smekni.com

Спиральные антенны (стр. 9 из 11)

Рисунок 3.4.5. Токи, наведённые в корпусе, в основном сосредоточены в крышке телефона

Важнейшей характеристикой антенной системы сотового телефона является диаграмма направленности, особенно в азимутальной плоскости. Такая диаграмма направленности (рис 3.4.2) получена для нескольких углов места, и наиболее важный тестовый угол -

= 90º. Угломестные диаграммы направленности (рис. 3.4.3) рассчитаны для нескольких азимутальных направлений. При
= 0 это соответствует положению, когда широкая сторона телефона направлена на читателя.

Из ДН на 3.4.3 видно, что в вертикальном направлении излучение на 8 дБ меньше, чем в горизонтальном. Из азимутальной диаграммы мож-но видеть интересный для практики случай: при

= 90º в ДН имеет ноль, то есть полное затенение. Здесь имеет место компенсация излучения от спиральной антенны и наводок на корпусе.

Анализ антенной системы с открытой крышкой и с не выдвинутым штырем.

Программа IE3D рассчитывает абсолютные значения плотности токов на корпусе (рис. 3.4.4 и 3.4.5). На рис. 3.4.5 максимальный ток на крышке в 4 раза меньше, чем максимальный ток на поверхности спирали.

Из анализа диаграмм направленности, по сравнению с предыдущим случаем, можно видеть (часть графиков опустим), что антенна перераспределила максимум излучения вверх. Открытая крышка, благодаря наклонному положению, действует как отражатель.

Анализ антенной системы сотового телефона с вынутым штырем и закрытой крышкой.

Из анализа частотной характеристики на диаграмме Смита (рис. 15) видно, что наилучшее согласование системы достигается в районе 1,39 ГГц, причём его величина значительно выше из-меренной в реальном телефоне. Это подтверждает то, что программу IE3D можно использовать только для относительных оценок тока на поверхности и анализа металлического корпуса без покрытия. Программа IE3D не позволяет ввести 3D диэлектрические стенки, однако она позволяет моделировать металлические поверх-ности любой сложности, включая проёмы, что важно при проектировании корпусов нестандартной формы.


Рисунок 3.4.6. Частотная характеристика входного сопротивления антенной системы сотового телефона

Диаграммы направленности при вынутом штыре усиливают излучение в азимутальной плоскости благодаря действию несимметричного вибратора.

Анализ антенной системы сотового телефона в рабочем режиме (TP) с открытой крышкой и вынутым штырем

Этот режим наиболее часто тестируется. Измерения показывают, что в этом режиме (рис 3.4.7) направленность антенны в азимутальной плоскости хуже, чем с закрытой крышкой телефона. Открытая крышка действует и как вторичный отражатель, и как поглотитель мощности радиоволн, излучаемых антенной. В краях крышки, параллельных штырю антенны, наводятся токи, которые могут формировать изрезанную ДН.

Рисунок 3.4.7. Частотная характеристика значительно отличается от экспериментально измеренной, поскольку программа IE3D не позволяет описывать трёхмерное диэлектрическое покрытие


Из анализа ДН видно, что крышка экранирует излучение штыря антенны. Она действует как экран на дальнее поле и значительно (на 4 дБ) уменьшает усиление в направлении за крышкой. Этот вывод подтверждается экспериментально.

Экспериментальные измерения диаграммы направленности в безэховой камере показали её сильное изменение по величине при открытой крышке. Методика измерения диаграммы направленности состоит в измерении чувствительности телефона на системном уровне (прибором, имитирующем базовую станцию). В данном случае регулируется общее усиление по петле усиления: передатчик базовой станции, передающая антенна, сотовый телефон, ориентированный в пространстве, и аппаратура приёмника базовой станции. При открытой крышке чувствительность некоторых телефонов падает до очень низкого уровня, и система не имеет возможности её измерить.

Глава 4. Расчёт диаграмма направленности плоских спиральных антенн

4.1 Типы нормальных волн и свойства симметрии спиральных антенн

Известные типы спиральных структур обладают либо симметрией вращения, либо винтовой симметрией, являющейся сочетанием симметрии вращения и трансляционной симметрии. Различные видыгеометрической симметрии замедляющихсистем и вытекающие изнее следствия относительно свойств электромагнитных полей. Воспользуемся основными известными общими положениями для рассмотрения электродинамических свойств спиральных структур. Напомним лишь, что симметрия вращения заключаетсяв свойстве спирали совмещаться с собой при поворотевокруг некоторой оси на угол 2π/М, где М— целое число, равное числу заходов (плечей ) спирали. Эта симметрия характеризуетсяповоротной осьюсимметрии См.

При трансляционной симметрииспираль совмещаетсясама с собой при смещении ее вдоль оси на величину S/M, где S — шаг спирали. При винтовой симметрии спираль совмещается сама с собой при повороте вокруг оси на угол 2π/М и одновременном перемещениивдоль оси на S/M. Такая симметрия характеризуетсявинтовой осью симметрии Cм1.Точки структур, совмещающиеся при преобразованиях симметрии, называютсясимметричными.

Все известные типы спиралей имеют симметрию вращения, а винтовую симметрию – лишь цилиндрическиебесконечные спирали с постоянным шагом S. Такие спирали ниже называются регулярными. Однозаходные плоские, конические и цилиндрические спирали имеют поворотную ось симметрии С1,двухзаходные — ось С2 и т. д. Регулярная однозаходная спираль имеет винтовую ось симметрии С11, двухзаходная—ось C21 и т. д.

Хотя конечная цилиндрическая спираль с постояннымшагом и не имеет трансляционной и винтовой симметрии, ееможно рассматривать как отрезокрегулярной спирали с этимидвумя видами симметрии, в котором существуют прямые и обратныеволны. При анализе такой антенныможно использовать результаты, полученные для бесконечно длинной спирали.

В практическихконструкциях спиральных антеннчасто применяется диэлектрик в виде опорных цилиндров, на поверхность которых укладываютсязаходы. Если диэлектрик однороден в азимутальном и продольном направлениях, то свойства симметрии спиральной структуры не изменяются.

Для уменьшения поперечных размеров спиральной антенны можно использовать замедляющие системы, уменьшающие фазовуюскорость тока в заходах спирали. Такая замедляющая система может бытьоднородной в азимутальном и продольном направлениях. Кроме того, проводник спирали может представлять собой замедляющую систему (например, спираль малого радиуса или зигзагообразную ленту), причем однородную вдоль спирального направления. В этих случаях свойства симметрии структуры также не изменяются. В дальнейшем предполагается,что и диэлектрик, и замедляющие системы не нарушают свойств симметрии.

Рассмотрим свойства полей в системах с различной симметрией.

Пусть рассматриваемая система имеет поворотную ось симметрии См, т.е. представляет собой М-заходную произвольную спираль — плоскую, коническую или цилиндрическую.

Как показано, поле произвольным образом возбужденной замедляющей системы с поворотной осью симметрии Смможно представить в виде суммы Мтак называемых нормальных волн, каждая из которых удовлетворяет граничнымусловиям в системе. Вектор напряженности электрического поля в q-йнормальной волне может быть записан в виде

Eq(r, φ, z)=Е0q(r, φ, z)ехр[-ίqφ],(4.1.1)


где q- целое число, характеризующее тип волны,

-М/2<q≤Μ/2;Е0q — периодическая функция координаты φ цилиндрической системы координат, ось zкоторой совпадает с осью симметрии См.Период функцииравен 2π/Mи ее можно разложить в ряд Фурье:

Еоq(r,φ,z)=

emq(r,z)exp[-imMφ](4.1.2)

е— коэффициент разложения. Из (4.1.1) и (4.1.2) cледует выражение для поля q-йнормальной волны:

Eq(r,φ,z)=

emq(r,z)exp[-ίνφ], (4.1.3)

где ν=qmΜ. (4.1.4)

Выражение (1.3) представляет собой разложение поля этой нормальной волны на так называемые азимутальные пространственные гармоники.

Аналогичноможно представить токи в системе, соответствующие q-йнормальной волне:

jq(r,φ,z)=

jmq(r,z) exp[-ίνφ]. (4.1.5)

Из (1.3) — (1.5) следует, что в q-юнормальнуюволнyвходят азимутальныепространственные гармоники с индексамиν=q+mM.

Поля итоки в соседних симметричных точках (в точках, совмещающихся приповороте системы вокруг оси| zна угол 2π/М) связаны соотношениями:


Еq (r, φ+ 2π/М, z) = Еq (r,φ,z )exp [-ί2πq/Μ]; (4.1.6)

jq (r,φ+2π/M, z) = jq (r,φ, z)exp [— ί2πq/M].

Из (4.2.6) следует, что поля итоки в указанных точках одинаковы по амплитуде исдвинуты по фазе на 2πq/M. Если возбуждающие заходы спирали э. д. с. (или токи) одинаковы по амплитуде и сдвинуты по фазе на указанную величину, в системе возбуждается только q-янормальная волна. В этой волне при заданных геометрических размерах спирали в зависимости от частоты может резонировать та или другая азимутальная пространственная гармоника, входящая в возбуждаемую нормальную волну. Резонирующая пространственная гармоника даст основнойвклад в поле излучения и определяет диаграмму направленности, поляризационную и фазовую характеристики всей антенны вдальней зоне.