Вказана властивість породила ще одну назву характеристичних корнів – мультіплікатори (помножувачи). Послідовне використання цієї властивості відносно рішення
Тобто, при
Рішення, для якого вірно (7), можна переписати в такій формі:
де
Теореми Ляпунова та Андронова-Витта можна сформулювати інакше, вводячи характеристичні показники замість характеристичних коренів. Тепер стійкість має місце при
За допомогою (6) можна отримати рівняння для характеристичних показників. Попередньо (6) треба записати у вигляді
В (9) позначено:
Щоб знайти потрібне рівняння, підставимо в (9)
Нагадаємо, в рядах Фур’є для
Після елементарних перетворювань маємо
Покладемо
Складена лінійна комбінація лінійно незалежних функцій
Отримали для спектральних складових напруги
Нехай
За допомогою (11) знайдемо, що елементи головної діагоналі (k=m) дорівнюють одиниці.
Використовуючи (11), можна встановити наступну властивість: заміна
Це виникає тому, що змінивши нумерацію рядків після вказаного підставлення, отримаємо той самий визначник.
З цієї властивості витікає: якщо
Нескінченний визначник Хіла вдалося звести до виразу, який для (9) має вигляд:
де
n – порядок рівняння (9),
Значення чисельних визначників можна розраховувати із наперед заданою точністю. Доведено, що в сумі вони дорівнюють нулю.
Наприкінці визначимо суть полінома, вхідного до знаменника опору
витікає, що цей – опір між точками вмиканняння елементів з періодично змінними параметрами, в який увійшли середні значення змінної провідності та ємності. Знайти цей опор можна, підімкнувши до відповідних точок джерело струму
4. Зв’язок розрахунку періодичного режиму із аналізом стійкості
Аналіз стійкості періодичного режиму нелінійної схемі повинен бути пов’язано з методом, за яким цей режим визначається. Інакше можна отримати результати, що не мають ніякого фізичного смислу. Для приклада звернемо увагу на частотну характеристику контуру із нелінійною ємністю. Дослідження стійкості, що виконане в відриві від методу розрахунку періодичного режиму, може привести до того, що точки із вертикальними дотичними не будуть визначати межі стійкості.
Так, як же повинні бути зв’язані ці дві задачі – розрахунок періодичного режиму та аналіз його стійкості? Щоб зрозуміти цей зв’язок скористаємось спектральним уявленням.
Припустимо, періодичний режим розраховується часовим методом. Тоді, на спектральний склад усталеного процесу обмеження не накладаються. Тому можна казати, що враховано багато гармонік (можливо нескінченна кількість). Цю обставину і треба мати на увазі при обранні методу дослідження стійкості: при аналізі повинно враховуватися багато гармонік. Очевидно підходять обидва розібрані вище методи, які опираються на характеристичну матрицю і нескінченний визначник Хіла.
Зараз припустимо, що періодичний режим був знайдений спектральним методом і було взято до уваги N гармонік. Нехай результати обліку ще однієї гармоніки практично співпали з попередніми. Це означає, що на лінійну частину схеми повинні бути накладені певні вимоги. Провідність