Федеральное агентство по образованию РФ
Рязанский государственный радиотехнический университет
Кафедра РУС
Курсовой проект по дисциплине
Антенны и устройства СВЧ
на тему:
Коллинеарная антенная решетка с параллельным возбуждением
Выполнила:
ст гр 416
Брыкова Е.В.
Рязань 2007
Введение
Антенные решетки – наиболее эффективные и перспективные антенные системы, позволяющие осуществлять быстрый обзор пространства, многофункциональный режим работы, комплексирование радиосредств, адаптацию к конкретной радио обстановки ,предварительную обработку сверхвысокочастотных сигналов, обеспечение электромагнитной совместимости и т.д. Антенная решетка, обеспечивающая излучение и прием радиоволн,- неотъемлемая часть любой радиотехнической системы. Требования к техническим характеристикам антенн вытекают из назначения радиосистемы, условий размещения, режима работы, допустимых затрат и т.д. Реализуемость необходимых направленных свойств, помехозащищенности, частотных, энергетических и других характеристик антенн во многом зависит от рабочего диапазона волн.
Применение антенных решеток обусловлено следующими причинами. Решетка из N элементов позволяет увеличить приблизительно в N раз КНД (и соответственно усиление) антенны по сравнению с одиночным излучателем, а также сузить луч для повышения точности определения угловых координат источника излучения в навигации, радиолокации и других радиосистемах. С помощью решетки удается поднять электрическую прочность антенны и увеличить уровень излучаемой (принимаемой) мощности путем размещения в каналах решетки независимых усилителей высокочастотной энергии. Помехозащищенность радиосистемы зависит от уровня боковых лепестков антенны и возможности подстройки (адаптации) его по помеховой обстановке. Антенная решетка является необходимым звеном для создания такого динамического пространственно-временного фильтра или просто для уменьшения уровня боковых лепестков.
Вибраторные излучатели широко используются как элементы антенных решеток в метровом, дециметровом и сантиметровом диапазонах волн. Широкое применение вибраторных антенных решеток обусловлено рядом их достоинств: относительно малой массой, устойчивостью к атмосферным внешним воздействиям, возможностями складывания и быстрого разворачивания в мобильных радиотехнических системах, получения произвольной поляризации и управления поляризационной характеристикой излученного поля, управления диаграммой направленности отдельных излучателей благодаря включению управляемых нагрузок.
Вибраторы широко применяются как в качестве самостоятельных антенн, так и в сложных антенных системах; являются, например, элементами антенных решеток или облучателями зеркальных и линзовых антенн. В последних случаях для получения однонаправленного излучения они используются вместе с рефлектором. Наибольшее распространение вибраторные антенны получили в KB и УКВ диапазонах.
Вследствие того, что постоянная ЭДС приложена вдоль оси вибратора между его внутренними торцами и вибратор предполагается тонким, электрический ток имеет только одну составляющую Iz (z). При теоретическом анализе в цилиндрической системе координат р,
, zсначала решают внутреннюю задачу теории антенн, т.е. находят распределение тока на вибраторе. Это распределение в пространстве создает электромагнитное поле, которое можно описать одной продольной составляющей электрического потенциала (1.1)где I(z’) - эквивалентный ток, распределенный вдоль оси вибратора,
, - координата на поверхности =a.Выразив Ez через
по известной из электродинамике формуле и подставив в граничные условия на поверхности вибратора, для эквивалентного тока получим интегральное уравнение (1.2)где U=
d-ЭДС, d-ширина зазора; А и В- постоянные, определяемые из условия обращения распределения тока в ноль на концах вибратора. Точное решение уравнения (1.2) в аналитическом виде не находится. Его приближенное решение для симметричного вибратора имеет довольно простой вид: (1.3)где I
=const-амплитуда тока в точке питания (Z=0); верхний знак берется для z<0, нижний - для z>0.Распределения тока и заряда для тонкого симметричного вибратора приведены на рисунке 1. При 21
распределение является синфазным, а при 21 > - переменно-фазным.Наиболее распространенный тип вибратора - полуволновой с
. Его важной особенностью является то, что функция распределения тока не зависит от положения точки возбуждения. У вибраторов другой длины эта функция зависит от положения точки возбуждения. Во всех случаях распределение тока на тонком вибраторе близко к синусоидальному. Подобные законы распределения тока будут и у криволинейных вибраторов, только роль координаты z будет играть координата вдоль оси криволинейного вибратора. Токи на одинаковых расстояниях от центра симметричного вибратора имеют одинаковые амплитуды и фазы, т.е.Iz(z)=Iz(-z). Несмотря на приближенный характер синусоидального распределения (1.3), оно дает хорошие результаты при расчете характеристик излучения симметричного вибратора. Это объясняется тем, что они по отношению к распределению тока являются интегральными характеристиками. Эффективная длина симметричного вибратора находится интегрированием распределения тока (1.3) по длине вибратора. Относительно входа имеем (1.4)Рисунок 1 - Распределения тока и заряда в электрическом вибраторе
Для тонкого полуволнового вибратора с синусоидальным распределением тока находим 1эф
0,637*2l Для электрически короткого вибратора (k ) с треугольным распределением тока получаем 1эф = 0,5*2l,т.е. эффективная длина электрически короткого вибратора равна половине его геометрической длины.Совместим центр симметричного вибратора с началом сферической системы координат. Векторный потенциал в дальней зоне описывается выражением
(1.5)Единственную составляющую напряженности электрического поля в этом случае можно записать так
(1.6) (1.7)где Iвх - амплитуда тока на входе; w - волновое сопротивление среды.
Формула получена подстановкой (1.3) в (1.5). Для вибраторов вместо Iвх часто вводят значение тока в максимуме Imax=Iвх/sin.kl, которое никогда в нуль не обращается. После вычисления интегралов получим
(1.8)где l - длина плеча.
Отсюда можно сделать выводы:
• поле имеет характер сферических волн с центром в начале координат, т.е. фазовый центр вибратора совпадает с его геометрическим центром;
• от координаты (
поле не зависит и ДН в азимутальной плоскости имеет вид окружности;• в направлении оси (
) поле излучения равно нулю, т.е. вдольоси вибратор не излучает. Это следует из (1.7) после раскрытиянеопределенности;• форма ДН в меридианной плоскости зависит от электрической длинывибратора. При 2/ < 1,25/1 ДН имеет максимум в боковом направлении
(
)В азимутальной плоскости
. При 2l> 1,25 необходимо сначала определить направление а затем произвести нормировку. Для очень коротких вибраторов (kl 1) имеем что совпадает с ДН диполя Герца. Для полуволнового вибратора ( kl = /2 ) получаем