Для построчной развертки изображения требуется обеспечить перемещение луча по горизонтали для считывания строки (строчная развертка) и по вертикали для перехода от строки к строке (кадровая развертка). Такое перемещение луча осуществляется с помощью отклоняющих пластин 3 – горизонтальных и вертикальных. На отклоняющие пластины подаются пилообразные напряжения развертки.
Так как в кадре умещается целое количество строк, то генератор кадровой развертки запускается импульсами, полученными делением частоты импульсов строчной развертки.
Передаваемый сигнал содержал сигнал изображения и строчные синхронизирующие импульсы. В приемнике строчные импульсы выделялись из принятого сигнала и запускали генератор строчной развертки, а кадровая развертка запускалась импульсами, полученными делением (по частоте) строчных импульсов. Для демонстрации работоспособности системы такое построение годилось, но для приемников широкого пользования необходима была еще и кадровая синхронизация.
Судьба системы, разработанной Б.П. Грабовским, сложилась драматично. В работе ее видели только сам разработчик и небольшой круг близких ему людей. Во время перевозки системы из Ташкента в Москву для демонстрации все стеклянные детали системы разбились.
Первую работоспособную электронную телевизионную систему с высоким качеством изображения создал В.К. Зворыкин в 1930 – 1931 гг. в США. В ней использовались более совершенные передающая трубка с накоплением заряда – иконоскоп и приемная трубка – кинескоп конструкции Зворыкина. В системе Зворыкина передавались как строчные, так и кадровые синхронизирующие импульсы. Форма их показана ниже.
3. Разделение строчных и кадровых синхроимпульсов
Для выделения импульсов синхронизации в приемнике используется амплитудный селектор, на выходе которого появляются импульсы, уровень которых чернее черного. Далее эти импульсы нужно разделить на строчные и кадровые и направить их в соответствующие каналы формирования строчной и кадровой разверток. Предложенный в начале тридцатых годов принцип разделения остался неизменным и до настоящего времени.
Для выделения строчных синхронизирующих импульсов используется дифференцирующая цепь R1C1, а для кадровых синхронизирующих импульсов – интегрирующая цепь R2C2.
RC-цепи так часто вам будут встречаться дальше в различных схемах, что стоит подробнее рассмотреть физические процессы в этих цепях.
Рассмотрим простейшую RC-цепь, состоящую из резистора R, конденсатора C и импульсного источника питания V.
В исходном состоянии напряжение источника питания равно нулю, конденсатор не заряжен, напряжение на нем тоже равно нулю. Ток через резистор не течет.
В момент времени t1 напряжение источника питания изменяется скачком и становится равным Е. Напряжение на конденсаторе не может измениться скачком (по той же причине, по которой нельзя изменить скачком уровень воды в кастрюле), оно остается равным нулю, и к резистору приложена разность потенциалов Е. Возникает ток I = E/R. Этот ток заряжает конденсатор. Напряжение на конденсаторе UC возрастает. Это приводит к уменьшению разности потенциалов E - UC, приложенной к резистору и к уменьшению тока через резистор I = (E - UC)/R. Конденсатор заряжается медленнее. Поэтому напряжение на конденсаторе растет со все уменьшающейся скоростью. Рост напряжения прекратится тогда, когда ток заряда (ток через резистор) станет равным нулю. А это произойдет, когда напряжение на конденсаторе станет равным напряжению источника питания. Падение напряжения на резисторе уменьшается при этом от Е до нуля. Обратите внимание, что сумма напряжений на конденсаторе и на резисторе всегда остается равной напряжению источника питания.
В момент времени t2 напряжение источника питания скачком изменяется до нуля. К резистору прикладывается напряжение 0 – UC = -Е, так как конденсатор был заряжен до напряжения, равного Е. Через резистор потечет ток –Е/R. Знак “–” говорит о том, что направление тока изменилось. И этот ток будет разряжать конденсатор. По мере разряда конденсатора ток будет уменьшаться, и напряжение на конденсаторе будет уменьшаться медленнее. В конце концов конденсатор полностью разрядится.
В зависимости от того, с какого элемента снимается напряжение, с резистора или с конденсатора, RC-цепочка называется дифференцирующей или интегрирующей. Дифференцирующей потому, что при подаче постоянного напряжения на ее вход напряжение на выходе ( на резисторе) в установившемся режиме равно нулю. (Вспомним: производная от постоянной величины равна нулю). Интегрирующей потому, что при подаче постоянного напряжения на ее вход напряжение на выходе (на конденсаторе) начинает расти по линейному закону. (Вспомним: интеграл от постоянной величины – линейная функция).
Скорость процессов определяется постоянной времени τ = RC. Считают, что конденсатор полностью заряжается за время, равное 3τ.
А теперь вернемся к задаче разделения строчных и кадровых синхронизирующих импульсов
Структура полного телевизионного сигнала (сигнал изображения + все вспомогательные импульсы) к настоящему времени стандартизована. На строчном интервале форма полного телевизионного сигнала для черно-белого телевидения показана на рисунке. Здесь использованы следующие обозначения: СГИ – строчный гасящий импульс, ССИ – строчный синхронизирующий импульс, уровень ГИ – уровень гасящих импульсов, уровень СИ – уровень синхронизирующих импульсов. Гасящие импульсы необходимы для запирания приемной трубки на время обратного хода.В телевидении используется негативный сигнал. Это означает, что с увеличением амплитуды сигнала яркость изображения падает. Передача негативного сигнала повышает помехоустойчивость канала изображения. Импульсные помехи оказываются в области черного и создают на экране кинескопа черные точки, которые менее заметны, чем яркие светлые.
На рисунке ниже показана часть полного телевизионного сигнала (а) с кадровыми гасящим 3 и синхронизирующим 1 импульсами. Так как во время обратного хода по кадрам должна поддерживаться строчная синхронизация, то при передаче кадровых гасящих импульсов передаются также и строчные синхроимпульсы. Во время кадрового синхроимпульса 1 строчные синхроимпульсы передаются так называемыми врезками 2.