Так реализуется измеритель отклонения направления на цель от равносигнального направления. Измеренное отклонение можно использовать для разворота антенной системы так, чтобы равносигнальное направление приближалось к направлению на цель. Но так как цель перемещается по азимуту и углу места, т.е. по двум взаимно перпендикулярным направлениям, то нужно иметь еще пару антенн с пересекающимися диаграммами направленности в плоскости, перпендикулярной рассмотренной. В 60-е годы сделают РЛС сопровождения с антенной системой, формирующей четыре пересекающихся диаграммы направленности и назовут ее моноимпульсной.
Но в 40-е годы (во время второй мировой войны) нашли другое решение: использовали круговое вращение диаграммы направленности. Это эквивалентно поочередному подключению к приемнику одну за другой четырех антенн с пересекающимися диаграммами направленности, только вместо ступенчатого перехода диаграммы направленности из одного положения в другое этот переход стал плавным. Конструктивно такое вращение осуществлялось просто. Станции орудийной наводки работали в СВЧ диапазоне, и антенна представляла собой параболоид вращения, в фокальной плоскости которого располагался излучатель – полуволновый вибратор или рупор. Если этот излучатель сместить относительно оси параболоида, то максимум излучения антенны не будет совпадать с осью антенны, что поясняется рисунком ниже.
Если теперь вращать излучатель, то будет вращаться диаграмма направленности при неподвижном отражателе. РЛС слежения, в которых производится вращение диаграммы направленности, называются РЛС с коническим сканированием. Сменившие их через четверть века РЛС с одновременным сравнением четырех диаграмм направленности стали называться моноимпульсными РЛС.
Структура системы управления антенной РЛС слежения приведена ниже
Она содержит два независимых канала управления: по азимуту и по углу места. Если самолет находится на равносигнальном направлении, то напряжение на обоих выходах пеленгатора (по азимуту и углу места) равно нулю, на двигатели никакого напряжения не подается и антенна остается в прежнем положении. Смещение самолета с равносигнального направления приводит к появлению напряжения на выходе пеленгатора и к развороту антенны до тех пор, пока напряжение на выходе пеленгатора не станет равным нулю, т.е. пока равносигнальное направление не совпадет с направлением на цель.
Как мы отмечали в начале этого занятия, создателям радиолокаторов пришлось отказаться от использования непрерывного излучения, так как было сложно измерить дальность. И эта трудность многократно увеличивалась, когда в зону облучения попадало несколько целей.
Но существуют задачи, когда в зону облучения радиолокационной установки может попасть только один единственный объект. Это задача определения высоты летательного аппарата относительно поверхности земли, а также возникшая в последние полвека задача радиолокационного обеспечения сближения и стыковки космических аппаратов. Для решения этих задач используется обычно непрерывное излучение.
Существует два метода измерения дальности при непрерывном излучении: частотный и фазовый. О фазовом мы немного говорили при изучении истории радионавигации, теперь познакомимся с частотным. Для этого надо излучать такой сигнал, чтобы каждому моменту времени соответствовало свое значение частоты.
Пусть излучается сигнал, частота которого линейно изменяется со временем
Отраженный от объекта сигнал задержан относительно излученного на время распространения сигнала до объекта и обратно. Поэтому частота принимаемого сигнала будет отличаться от частоты излучаемого в момент приема сигнала на величину Df(см. рисунок), которая пропорциональна задержке отраженного сигнала. Остается измерить разностную частоту и проградуировать шкалу частотомера в единицах измерения расстояния.
На практике нельзя линейно изменять частоту сколь угодно долго, и поэтому используют периодическое изменение частоты (по гармоническому или треугольному законам) с достаточно большим периодом. Впервые такой метод был реализован в альтиметре Ю. Бентли, заявленном в 1928 г. и запатентованном в 1935 г. В самолетных высотомерах малых высот (до 1000 м) часто используется ЧМ колебание с треугольным законом изменения частоты.
Разносная частота F не будет все время постоянной. На участках, когда частота излученного (прямого) и отраженного сигналов изменяются противоположно, разностная частота будет меньше F. Но так как период модуляции Т много больше времени задержки t1, то этот участок кратковременный, и к заметной ошибке в измерении высоты не приводит.
На рисунке выше показан принцип построения высотомера с ЧМ излучением.
Под крыльями самолета установлены антенны: одна передающая, другая приемная. Они разнесены и разделены корпусом самолета, чтобы уменьшить прямое прохождение излученного сигнала в приемник. В приемнике смешиваются принятый сигнал и ослабленный сигнал от передатчика. В результате смешения (а это нелинейное преобразование сигналов) выделяется сигнал разностной частоты. Индикатор высоты представляет собой стрелочный прибор. Шкала его проградуирована в метрах, хотя он измеряет частоту разностного сигнала.
Заключение
Радиолокация представляет собой средство расширения возможностей человека определять наличие и положение объектов за счет использования явлений отражения радиоволн этими объектами. Ее ближайшим конкурентом при выполнении этих функций является оптическая техника, включающая телескопы, которые обладают высокой точностью и обычно имеют фотографические регистрирующие устройства. Преимущество радиолокационных средств по сравнению с оптическими состоит в том, что радиолокационные устройства могут работать в темноте и сквозь облака, обладают большой дальностью действия и позволяют определять дальность до объекта со значительно большей точностью, нежели оптические устройства. Хотя световые волны также являются электромагнитными, но в радиолокации частота их намного ниже. Это позволяет применять радиотехнические методы и схемы.
Развитие радиолокации явилось важной частью технической революции двадцатого века. Военная техника, использующая принципы радиолокации, впервые была создана перед самым началом второй мировой войны; с этого времени наблюдается быстрый и непрерывный прогресс в указанной области.
Практические применения радиолокации в настоящее время отличаются большим разнообразием. Некоторые из наиболее важных задач радиолокации связаны с ее применением в военной технике; сюда относится обзор пространства и обнаружение самолетов противника и наземных подвижных объектов, обеспечение данных для управления орудийным огнем, а также данных для управления ракетами в полете. Кроме того, радиолокационные средства широко используются в навигации как самолетов, так и кораблей (особенно в ночное время и в условиях тумана), они являются важным элементом современных систем управления воздушным движением, используются с целью управления движением автомашин и имеют большое значение для обеспечения прогнозов погоды. Радиолокация — отличное средство для исследования земной атмосферы и ионосферы, а также для изучения метеоров. В настоящее время радиолокационные устройства используются для обзора космического пространства, обнаружения и слежения за искусственными спутниками Земли, а также в системах противоракетной обороны. Также радиолокация применяется для астрономических наблюдений соседних космических тел солнечной системы: Луны, Солнца, Венеры, Марса и Юпитера. Области применения радиолокации по мере дальнейшего освоения космического пространства, по всей вероятности, будут все больше расширяться. Последние годы не менее актуальными стали вопросы подповерхностного зондирования и нелинейной локации. Подповерхностная радиолокация дает информацию о свойствах и параметрах среды, ее неоднородности. Нелинейная радиолокация (поиск элементов с p-n переходом или нелинейной вольтамперной характеристикой), используется при поиске от различных радиозакладок, «жучков» и прочих электронных средств незаконного съема информации, до радиоуправляемых фугасов и взрывных устройств.
Список литературы
импульсная радиолокация координата
1) Перминов И.Г. «Физические основы получения информации». 2006 год.
2) Артамонов В.М. «Электроавтоматика судовых и самолетных радиолокационных станций». 1962 год.
3) Современная радиолокация. Анализ, расчет и проектирование. Под редакцией Кобзарева Ю.В., М., Сов.радио, 1969г.-704стр.
4) Дулевич В.Е. Теоретические основы радиолокации. М., Сов.радио, 1978г. – 608стр.
5) Ширман Я.Д. Теоретические основы радиолокации. М., Сов.радио, 1970г. – 560стр.
Размещено на http://www.