2.2 Переходные искажения первого рода (в области ВЧ)
Переходные искажения первого рода проявляются как наложение импульсов друг на друга и возникают при недостаточно широкой полосе пропускания тракта или при малом временном интервале между импульсами соседних каналов (рисунок 22):
Рисунок 22
Для анализа переходных помех первого рода аппроксимируют ВЧ часть частотной характеристики общего тракта частотной характеристикой RC – цепи (рисунок 23).
Рисунок 23
Амплитудно – частотная характеристика RC цепи имеет вид:
, ( 20)где
- полоса на уровне 0.707, .В случае переходные искажения 1-го рода в системе ШИМ ошибка равна:
. ( 21)Т.е. для уменьшения ошибки
необходимо увеличивать полосу тракта или интервал , возможно использовать предискажения.Глава 3 Помехоустойчивость РТМС с ВРК
Флюктуационные помехи на входе приемного устройства приводят к изменению амплитуды и длительности импульсов. Помехи, действующие между импульсами называются – интервальными. Помехи, накладывающиеся на импульсы делятся на срединные и краевые. При АИМ путем стробирования приемника можно избавиться только от интервальных помех. При ВИМ и ШИМ использование ограничений по минимуму и максимуму позволяет избавиться от срединных помех, но действие краевых помех остается. Оценим помехоустойчивость РТМС с АИМ-АМ, ШИМ-ЧМ, ФИМ-АМ.
Структурная схема приемной части системы с ВРК изображена на рисунке 24.
Рисунок 24
Полагаем, что отношение сигнал - шум достаточно велико. Шум нормальный белый в полосе приемника. В качестве критерия оценки используется отношение случайной компоненты выходного сигнала к полезной, т.е. относительную случайную ошибку. В этом случае при АИМ-АМ относительная случайная ошибка имеет вид [2]:
, ( 22)где
- среднее квадратичное значение шума, - максимальное изменение амплитуды импульса, h – отношение сигнал - шум.Следовательно для уменьшения относительной случайной ошибки в этом случае необходимо увеличивать отношение сигнал - шум.
При ШИМ-ЧМ относительная случайная ошибка равна:
, ( 23)где
- среднее квадратичное значение флюктуаций фронта импульсов, - максимальная полезная ширина импульса, - девиация частоты несущей, - канальный интервал.Для уменьшения относительной случайной ошибки системы ШИМ-ЧМ надо увеличить отношение сигнал - шум, девиацию частоты несущей и канальный интервал.
При ФИМ-АМ относительная случайная ошибка имеет вид:
, ( 24) - максимальное временное смещение, – индекс временной модуляции, - длительность импульсов. Для уменьшения относительной случайной ошибки в этом случае необходимо увеличивать индекс временной модуляции и отношение сигнал – шум.Глава 4 Многоступенчатая коммутация в РТМС с ВРК
Количество измеряемых величин и точность их измерения меняется в широких пределах, что требует применения разных частот дискретизации. В случае использования одного задающего генератора для увеличения гибкости аппаратуры используют многоступенчатую коммутацию, обеспечивающую разные тактовые частоты.
Принцип многоступенчатой коммутации показан на (рисунке 25).
Рисунок 25
Первая ступень коммутаторов
имеет m входов с временем подключения одного входа . Вторая ступень включает n коммутаторов с временем подключения . Входы с (n+1) до m используются для передачи служебной информации и осуществления синхронизации, аналоговые входы с (l+1) до К коммутаторов . Для простоты будем считать, что m=n, l=k, тогда , где N – общее число датчиков в схеме.Возможны два варианта использования схемы (рисунок 25):
1) Все коммутаторы
работают синхронно и синфазно. А , т.е. за время подключения одного входа коммутатора , коммутатор успевает опросить все m входов. Следовательно, на выходы схемы будут последовательно поданы сигналы всех первых датчиков, затем вторых и т.д. Увеличение частоты опроса для ряда датчиков достигается путем их подключения одновременно к нескольким входам одного коммутатора (рисунок 26).Рисунок 26
2) Все коммутаторы
работают синхронно и синфазно, а . Т.е. на выходы схемы последовательно подаются сигналы всех датчиков коммутаторов , затем и т.д. Увеличение частоты опроса ряда датчиков достигается подключением датчика одновременно к нескольким одноименным клеммам разных коммутаторов второй ступени (рисунок 27).Рисунок 27
Возможно включение третий ступени коммутации.
Глава 5 Синхронизация в РТМС с ВРК
5.1 Системы и сигналы синхронизации
Система синхронизации в РТМС с ВРК обеспечивает синхронную и синфазную работу коммутаторов, установленных на передающей и приемной станции. Нарушение синхронизма ведет к потере информации во всех каналах. В циклических РТМС через время
, равное периоду опроса, начинается новый цикл. Для разделения каналов необходимо обозначить начало цикла. Для этой цели перед импульсом первого канала включается специальный сигнал (начало кадра), отличающийся от остальных сигналов по амплитуде, длительности или форме (рисунок 28).Рисунок 28
Такая синхронизация называется кадровой. На приемной стороне осуществляется выделение синхросигнала. Системы синхронизации могут быть двух типов: синхронные и стартстопные. Синхронные системы работают независимо от того, передается информация или нет. В этих системах предъявляются очень высокие требования к стабильности частоты генераторов.
В стартстопных системах передающий и приемный распределители работают совместно в течении одного цикла, равного длине кадра или длительности кодовой комбинации. Каждый новый цикл в них начинается с исходного синфазного положения. Рассмотрим обе системы.
Синхронная система синхронизации.
В этом случае осуществляется подстройка фазы колебаний высокостабильного генератора приемной станции под фазу колебаний передающей станции. В качестве сигналов, по которым производится фазирование, могут использоваться кадровые посылки, канальные сигналы и символы кодовых комбинаций.
Типичная схема коррекции фазы генератора приемной станции изображена на рисунке 2