При включенні транзисторів вихідного каскаду по схемі з ОК коефіцієнт посилення напруги завжди менше одиниці, тому амплітуда вхідного сигналу перевищує амплітуду напруги на навантаженні. Максимальна амплітуда напруги на навантаженні повинна бути близька до половини напруги живлення(для отримання високого КПД каскаду). При живленні підсилювача від однополярного джерела навантаження доводиться включати через розділовий конденсатор. В цьому випадку корисна потужність в навантаженні і КПД каскаду на нижчих частотах зменшуються унаслідок падіння напруги на конденсаторі.
2. РОЗРОБКА СТРУКТУРНОЇ І ПРИНЦИПОВОЇ СХЕМИ ПІДСИЛЮВАЧА
2.1 Розробка та обґрунтування структурної схеми підсилювачів
Впідсилювачах використовуються різноманітні схеми. Для наочного зображення пристрою підсилювача користуються схемою електричною структурною(рисунок 1), на якій прямокутниками з написами зображують основні частини пристрою, виконуючі певні функції, та основні взаємозв'язки між ними.
Звичайно підсилення сигналу, створюване одним каскадом, є недостатнім, тому застосовують багатокаскадні схеми підсилювачів. Сигнал, підсилений першим каскадом, подається на вхід другого, з виходу другого - на вхід третього і т.д. Тобто, здійснюється послідовне підсилювання сигналу колом каскадів.
Рисунок 2.1 - Структурна електрична схема підсилювача
Вхідний каскад є входом підсилювача. Призначення вхідного каскаду - забезпечення узгодження вихідного опору джерела сигналу з вхідним опором першого каскаду попереднього підсилювання. Якщо вихідний опір джерела сигналу рівний вхідному опору попереднього каскаду або набагато більший, то в цьому випадку вхідний каскад не треба застосовувати, а якщо менше то слід застосувати.
Як вхідний каскад використовують каскад з загальним колектором, загальний витоком - такі каскади називають повторювачами.
Вимоги до каскадів попереднього підсилення виходять з їх призначення - підсилювати напругу або струм, створені джерелом сигналу на вході, до величини, необхідної для збудження каскадів підсилення потужності. Тому найбільш важливими показниками для попереднього каскаду є коефіцієнти підсилення напруги та струму, частотна характеристика і частотні спотворення.
Передкінцевий каскад (драйвер)є джерелом сигналу для кінцевого каскаду. Він повинен забезпечити такі умови роботи вхідного кола кінцевого каскаду, при яких останній зможе віддати в навантаження максимальну неспотворену потужність. Основні вимоги, які ставлять до передкінцевого каскаду, - велика амплітуда неспотвореного сигналу на виході та малий вихідний опір. Вибір схеми передкінцевого каскаду в конкретному підсилювачі залежить від виду та режиму кінцевого каскаду.
Кінцеві каскадивідрізняються від каскадів попереднього підсилювання, в першу чергу, великим рівнем потужності сигналу. В підсилювачах низької частоти, працюючих на низькоомне навантаження, кінцевий каскад повинен віддавати визначену потужність на заданому опорі навантаження при коефіцієнті нелінійних спотворень, який не перевищує допустимої величини.
Умови роботи каскадів потужного підсилення залежить також від характеру зовнішнього навантаження. Наприклад, для підсилювачів низької частоти за навантаження можуть правити електродинамічні гучномовці, опір яких носить комплексний характер - містить індуктивну складову і отже, зростає зі збільшенням частоти. Однак на середніх звукових частотах (порядку сотень Герц), на яких ведуть розрахунок корисної потужності, віддаваємої підсилюючими елементами, опір корисного навантаження здебільшого можна вважати активним, що сильно спрощує побудову ліній навантаження і динамічних характеристик. Розрахунок каскадів ^потужного підсилення звичайно ведуть на активне навантаження.
Обґрунтуванням вибору структурної схеми підсилювача є його якісні і кількісні характеристики та параметри і їх сукупність.
2.2 Розробка та обґрунтування принципової схеми підсилювача
За способами підключення кінцевого каскаду до навантаження можна розподілити: на каскади з безпосереднім включенням навантаження, резисторні, дросельні та трансформаторні.
Найбільш високий ККД мають дросельні та трансформаторні каскади потужного підсилення. Максимальний ККД в них вдвічі більше,ніж при безпосередньому підключенні навантаження, та майже в 6 разів більше, ніж у резисторного. Однак у резисторного каскаду смуга підсилених частот ширше, ніж у дросельного, і значно ширше трансформаторного. Вартість, маса, габаритні розміри як дросельного, так і трансформаторного, набагато більше від резисторного.
Найпростішим способом підключення навантаження до каскаду потужного підсилювача є безпосереднє введення навантаження у вихідне коло підсилювального елемента без вихідного пристрою. До переваг такої схеми відноситься її простота, відсутність додаткових деталей, втрат потужності у вихідному каскаді, додаткових нелінійних, частотних та перехідних спотворень і можливість посилення сигналів у широкій смузі частот. До недоліків - протікання через навантаження постійної складової струму живлення.
В резисторному каскаді потужного підсилення навантаження підключається в вихідне коло через резисторно-ємнісний пристрій RС. Струм живлення тут через навантаження не проходить; крім того, навантаження поєднано з загальним проводом схеми, що часто буває необхідно. Резисторний каскад простий, але має недоліки в порівнянні з каскадом з безпосереднім включенням - наявність конденсатора, який звужує смугу пропуску підсилювача; розмір конденсатора збільшуються в ділянці низьких частот.
Навантаження, яке підключене безпосередньо та через конденсатор - застосовується в безтрансформаторних кінцевих каскадах, а навантаження, підключене через дросель та трансформатор у трансформаторних кінцевих каскадах.
Можливість використання безтрансформаторних схем саме в транзисторних кінцевих каскадах обумовлена, по-перше тим, що транзистори працюють при порівняно низькій напрузі живлення (тому безпосереднє підключення гучномовця не шкідливе для обслуговуючого персоналу), по-друге, вони можуть працювати на меншому опорі навантаження.
В безтрансформаторних схемах звичайно застосовується послідовне живлення транзисторів від одного чи двох джерел постійної напруги.
При розрахунку кінцевого каскаду з великою потужністю застосовують схеми на складених транзисторах. Складені транзистори мають великі коефіцієнти струму, великий вхідний і малий вихідний опори. До недоліків слід віднести звуження частотного діапазону складеного транзистора в порівнянні з одинарним.
Залежно від способу включення і типу застосовуваних транзисторів розрізняють дві схеми - схему Дарлінгтона та схему Шиклої. Комбінація складених транзисторів в вихідних каскадах дозволяє створити декілька різновидів схем кінцевого каскаду.
Характеризуючи ці схеми, можливо відмітити:
- коефіцієнти передачі за струмом верхнього та нижнього плеч у всіх схемах практично рівні коефіцієнту передачі за струмом складених транзисторів;
- в квазікомплектарних схемах спостерігається несиметричність вихідного сигналу з-за нерівності коефіцієнта підсилення плеч каскаду за напругою, а також із-за нерівності вхідного та вихідного опорів. Однак введення глибокого зворотного негативного зв'язку приводить до незначних відмін цих параметрів.
- коефіцієнти передачі за струмом верхнього та нижнього плеч у всіх схемах практично рівні коефіцієнту передачі за струмом складених транзисторів;
- в квазікомплектарних схемах спостерігається несиметричність вихідного сигналу з-за нерівності коефіцієнта підсилення плеч каскаду за напругою, а також із-за нерівності вхідного та вихідного опорів. Однак введення глибокого зворотного негативного зв'язку приводить до незначних відмін цих параметрів.
Основні вимоги, які ставлять до передкінцевого каскаду — одержання максимального підсилення за напругою для компенсації малих коефіцієнтів підсилення за напругою вихідного та вхідного каскадів.
При однотактному кінцевому каскаді, а також двотактному безтрансформаторному з послідовним збудженням плеч або з паралельним збудженням транзисторів різного типу (р-п-р і п-р-п)від передкінцевого каскаду потрібна однофазна вихідна напруга. У цьому випадку за передкінцевий може
правити звичайний резисторний каскад, в якому транзистор частіше всього ввімкнутий за схемою з загальним емітером, з безпосереднім або ємнісним зв'язком з кінцевим каскадом.