Если использовать определение подобия аффинных линейных преобразований так, как это представлено в Ур.1, с добавлением глобальных масштабных коэффициентов и конструкции, основанной на показателе связи, то можно распространить действие быстрых алгоритмов формирования ДН, связанных с обычными фрактальными решетками, на ПФР. Такую широкую методологию формирования ДН, подробно освещенную в [14], можно рассматривать как усовершенствованную СИФ, действующую не на геометрических структурах подгрупп, а на основе их диаграмм направленности. Другими словами, общую ДН можно рассматривать как образуемую решеткой, состоящей из решеток, а не как наложение радиоизлучения, произведенного набором отдельных изотропных точечных источников. В Уравнении 6 дано выражение для конфигурации подгруппы генераторов mступени ℓ, которое основано на ряде конфигураций фрактальных подгрупп ступени ℓ-1. Конечную конфигурацию радиоизлучения можно определить, используя изотропные источники для образования ДН исходных подгрупп и рекурсивно применяя данное выражение вплоть до получения ДН ступени L. Рекурсивные свойства формирования ДН, имеющиеся у ПФР, позволяют исследовать в ходе процедуры оптимизации гораздо большие геометрии решеток.
Таким образом, детерминированные фрактальные, полифрактальные и фрактально-произвольные решетки соотносятся друг с другом во многом так, как квадрат с прямоугольником, а прямоугольник с параллелограммом. Фрактально-произвольные решетки обладают наиболее общей геометрией, чем прочие, что в наибольшей степени затрудняет работу с ними. Поскольку в ПФР применяются показатели связи для определения того, как и когда применяется любой из множества генераторов, они являются подклассом фрактально-произвольных решеток. В свою очередь, детерминистские фрактальные решетки по сути являются полифрактальными или фрактально-произвольными решетками, в которых для выбора имеется лишь один генератор. Примеры всех трех типов решеток показаны на Рис.1. Чтобы вам было легче представить конфигурацию решеток, мы используем характерную геометрию фрактального дерева. Кроме того, на Рис.2 для представления отношений, связывающих три типа антенных решеток в плане их конфигурации, использована диаграмма Венна. Параметр Scпредставляет поле решения и содержит набор всех возможных методов, используемых для построения антенных решеток.
Рис.1. Примеры структур для (а) фрактальной решетки; (b) фрактально-произвольной решетки; (с) ПФР. В (с) цифры, указанные над генераторами, представляют показатели связи.
Рис.2. Диаграмма Венна, показывающая соотношение между фрактальными, полифрактальными и фрактально-произвольными решетками. Поле решения Sc представляет ряд, содержащий все возможные методы построения антенных решеток.
Фрактальные решетки / ПФР / Фрактально-произвольные решетки
генетический алгоритм полифрактальная решетка
Концепции детерминистских фрактальных и полифрактальных решеток можно использовать не только ради их связи друг с другом, но и для описания конфигураций периодических и произвольных решеток. Поскольку ПФР являются подклассом фрактально-произвольных решеток, положения, связанные с ПФР, в равной степени применимы к фрактально-произвольным. Понятия, касающиеся ПФР, можно использовать в описаниях всего ряда периодических антенных решеток, если тщательно подбирать параметры генератора так, чтобы антенные элементы были на равном расстоянии друг от друга. Для решения этой задачи есть несколько способов: возможно, простейшим для понимания является разложенное (факторированное) полифрактальное представление. Возьмем, к примеру, периодическую решетку, полное количество элементов PTкоторой можно представить составным числом простых множителей М, так что PT= р1 р2. рМ. ПФР уровня М можно построить из М генераторов, по одному на каждый из простых множителей. Любой оператор Хатчинсона Wmимеет рmаффинных линейных преобразований (т.е. Nm = pm), когда преобразования выбираются таким образом, чтобы каждая из преобразованных (перенесенных) подгрупп имела периодический интервал. Показатель связи для каждого из этих преобразований равен уровню ℓ фрактально-произвольной решетки, так что каждый из генераторов полностью применяется только к одному-единственному уровню ПФР. Поэтому очевидно, что любая конфигурация периодической решетки должна иметь, по крайней мере, одно соответствие среди ПФР.
Хотя для описания любой периодической решетки можно использовать разложенное полифрактальное представление, могут существовать также и более простые схемы полифрактальных периодических решеток. Разложенное полифрактальное представление можно упростить путем объединения нескольких простых множителей в небольшие составные числа, сокращая тем самым общее количество уровней, необходимых для получения антенной структуры. Более того, хотя и не столь очевидным образом, периодические решетки можно также строить из ПФР более общего характера. Далее, некоторые периодические решетки можно также описывать через детерминистские фрактальные решетки. Помимо тривиального случая одноступенчатой решетки, периодическую решетку можно построить в том случае, когда есть возможность разложить число элементов в структуру NL, где Nпредставляет число трансформов в операторе Хатчинсона, а Lпредставляет количество ступеней во фрактальной решетке. Параметры определяют так, чтобы интервалы между любыми аффинными линейными преобразованиями оператора Хатчинсона были равны. В Таблице 1 приведены параметры, необходимые для создания NL-элементной периодической решетки на основе детерминистской фрактальной. На Рис.3 показаны примеры факторированного полифрактального, общего полифрактального и NL-фрактального представлений периодической решетки.
Таблица 1. Общая конфигурация (хромосома) NL-элементной периодической решетки, созданная с использованием характерной детерминистской фрактальной геометрии: NL-элементная периодическая решетка, периодический интервал dГенератор, N– четное, Генератор, N– нечетное, or - или
Рис.3. (а) Факторированное полифрактальное представление; (b) Общее полифрактальное представление; (с) NL-фрактальное представление периодической решетки. Цифры, указанные над генераторами, являются показателями связи.
Если набор применяемых генераторов столь велик, что ни один из них не может быть выбран более одного раза, методологией ПФР можно пользоваться для описания полностью произвольных решеток. Полифрактальная модель, хотя и является для чисто произвольных решеток громоздкой и неэффективной, с теоретической точки зрения все же вполне здесь применима. Таким образом, можно сделать вывод, что с помощью ПФР можно описать любой класс антенных решеток. Кроме того, в большинстве случаев оказывается, что для решеток, построенных из множества генераторов, разупорядоченность (произвольность) ПФР является большей. Показанная на Рис.4 диаграмма Венна представляет классификацию периодических, произвольных, фрактальных и полифрактальных решеток относительно конечной конфигурации решетки. В поле решения Saпоказан ряд всех возможных конфигураций решеток; это поле отличается от поля решения Sс, представленного выше. Из Рис.4 также очевидно, что любую решетку можно представить в виде ПФР. Однако пунктиром обозначена граница, за пределами которой полифрактальную модель больше невозможно использовать для описания геометрии антенной решетки. В данной статье мы предъявляем оптимизационную процедуру, с помощью которой можно, используя понятия, характерные для ПФР, последовательно преобразовывать решетки, имеющие периодическую конфигурацию, основанную на фракталах, в более произвольные решетки. В следующих разделах подробно обсуждаются процессы, используемые для того, чтобы оптимизация могла следовать в этом русле.
Рис.4. Диаграмма Венна, описывающая отношения между различными классификациями решеток. Пунктиром показана граница области, в которой ПФР является приемлемой. Тем не менее, используя понятия ПФР, можно описать любые возможные решетки (включая чисто произвольные). Поле решения Sa представляет набор, содержащий любые возможные конфигурации антенных решеток.