Содержание
Введение
Глава 1. Классификация конфигураций решеток
Глава 2. Аутополиплоидизация генератора
Глава 3. Применение ГА и результаты
Заключение
Список литературы
Природа часто дает инженерам уникальную возможность понять суть методов, необходимых для решения сложных конструкторских задач. Конструирование, основанное на природных аналогиях, предоставляет инженерам множество уникальных и мощных средств проектирования. К примеру, генетические алгоритмы (ГА), относительно новый класс стохастических методов общей оптимизации, возникли из дарвиновских понятий о естественном отборе и эволюции. Аналогичным образом поведение роя насекомых или стаи птиц подсказало недавно идею оптимизации по принципу роения элементов (ОПРЭ). Нейронные сети (НС) и нечеткая логика (НЛ) созданы по принципу процесса принятия решения человеком. Фрактальная геометрия возникла из потребности наилучшим образом описать чрезвычайно неправильные формы естественных объектов, таких как береговая линия, топография местности, форма облаков, снежинок, растений, листьев, деревьев. Методы, заимствованные из природы, широко используются в последнее время, чтобы найти эффективные решения все более сложным задачам в области электромагнетизма.
Используется специально разработанный ГА, с помощью которого создаются оптимизированные равномерно-возбуждаемые решетки, базирующиеся на произвольных фрактальных геометриях и называемые полифрактальными решетками (ПФР). Как оказалось, такой метод имеет несколько важных преимуществ по сравнению с обычными подходами к оптимизации решеток. Во-первых, характерная фрактальная геометрия ПФР дает простой и компактный способ описания весьма сложных структур с помощью небольшого числа параметров. Именно это уникальное свойство и положили в основу эффективной схемы кодирования ГА, применяемой для оптимизации ПФР. Во-вторых, благодаря возможности итеративного получения целых сегментов ПФР, удалось создать быстрый алгоритм формирования ДН, необходимый для эффективного расчета связанных между собой ДН. Этот алгоритм значительно сокращает время оценки пригодности (соответствия) каждого элемента группы, что, в свою очередь, снижает общее время, требуемое для выполнения ГА. Фрактальная схема кодирования в сочетании с быстрым алгоритмом формирования ДН позволяет применять подход ГА для разработки гораздо больших оптимальных конфигураций решеток, чем было ранее возможно.
В данной статье мы развиваем идею, представленную ранее в [13-14], в направлении усовершенствования разработки ПФР за счет периодического применения хромосомо-подобного расширения, основанного на аутополиплоидии, которое позволяет - в ходе процесса оптимизации - увеличивать степень произвольности получаемых антенных решеток. Сутью проблемы создания антенной решетки является получение полностью произвольной конфигурации, поскольку она обладает наивысшей степенью свободы. Тогда положение любого антенного элемента в конструкции решетки было бы независимым параметром. Однако если иметь при расчете большое число параметров, оптимизационные процессы типа ГА часто становятся очень сложными. Более того, прямой расчет множителя для произвольных решеток может стать очень затратным, особенно для решеток большого размера (т.е. с большим N). В данной статье мы описываем процесс, при котором происходит удвоение числа генераторов (функций), используемых для описания ПФР. Этот процесс, называемый нами аутополиплоидизация генератора, заменяет каждый генератор двумя его копиями, идея чего заимствована из аутополиплоидизационной мутации, имеющей место в природе. По мнению биологов, такая мутация сильно повлияла на эволюцию растений и животных, обеспечив дополнительную степень свободы, что способствовало эволюционным процессам и в то же время сохраняло особенности, характерные для предыдущего поколения организмов. В используемом нами ГА мы моделируем аутополиплоидизацию путем удвоения генераторов фрактально-произвольной структуры и путем произвольного применения одной из его копий везде, где применялся исходный генератор. Такой метод создает в конце концов однородную структуру антенной решетки, удваивая при этом число параметров, используемых для ее описания. После этого появляется возможность разработки каждого генератора независимо от других, что дает искомую гибкость процесса разработки и обеспечивает большую произвольность ПФР, чем ранее. Ступень разработки, называемая периодом, продолжается до тех пор, пока оптимизация не достигнет своего предела. Достигнув предела в рамках периода, мы выполняем аутополиплоидизацию генератора по каждому члену совокупности и далее начинаем следующий период разработки. Таким образом, этот цикл можно использовать для эффективной разработки оптимизированных произвольных решеток на базе периодических, детерминистских фрактальных или иных ранее детерминированных ПФР.
Антенные решетки можно классифицировать по разным основаниям; в данной статье мы выбрали широкий класс конфигураций, объединяемых по признаку однородного возбуждения (намагничивания) элементов. Самыми распространенными здесь являются периодическая и произвольная решетки. Такие решетки являются полярно противоположными с точки зрения их геометрии и характеристик. Периодические решетки способны иметь относительно низкие уровни боковых лепестков, но являются не очень устойчивыми. Произвольные решетки, с другой стороны, устойчивы, но им обычно не присущ низкий уровень боковых лепестков. Поэтому периодические и произвольные решетки наилучшим образом пригодны только для своих специфических применений.
Помимо указанных конфигураций возможны и иные, основанные на ряде разнообразных подходов к расчету их геометрии. К примеру, оказалось, что весьма ценные особенности имеют конфигурации, построенные на фрактальных геометриях [19-21]. Детерминистские фрактальные решетки обладают такими автомодельными геометрическими свойствами, которые можно использовать при создании быстрого алгоритма формирования ДН, что является очевидным преимуществом при работе с решетками, имеющими большое N. Кроме того, детерминистские фрактальные решетки можно математически рассчитывать с помощью метода, строящегося на системе итерированной функции (СИФ) [12]. В основе СИФ лежит ряд аффинных линейных преобразований, выполняемых в точке (x,y), находящейся на эвклидовой плоскости. Обычно для решеток с геометриями, основанными на фракталах, такие преобразования описываются тремя локальными параметрами rn, φn, ψnи глобальным фрактальным масштабным параметром sf, так что (см. Ур.1).
Такое определение аффинных линейных преобразований и использование глобального масштабного параметра обеспечивает, что каждый преобразованный объект имеет идентичный масштаб и аналогичен исходному объекту. Ряд Nаффинных линейных преобразований ω1, ω2,., ωNназывается оператором Хатчинсона, для которого мы введем символ W. Операцию Хатчинсона можно применять рекурсивно и получить СИФ следующего вида: (см. Ур.2), где фрактал ступени ℓ+1, (обозначаемый Fℓ+1) строится из фрактала ступени ℓ (обозначаемого Fℓ). Последовательные применения оператора Хатчинсона дают все более высоко-порядковые итерации фрактальной структуры.
Другой тип решетки, называемый фрактально-произвольной, сочетает упорядоченные свойства фракталов с неупорядоченными свойствами произвольных решеток. Фрактально-произвольные решетки создаются способом adhoc (для особого случая), когда генераторы произвольно выбираются из ряда возможных выборов и применяются к фрактальной структуре. Такой произвольный выбор генераторов затрудняет математическое описание этих решеток с помощью СИФ. В целом из малого набора параметров, содержащихся в генераторах, невозможно точно воспроизвести фрактально-произвольные геометрии, и потому они по-настоящему не рекурсивны. Этот факт препятствует использованию рекурсии при создании быстрого алгоритма формирования ДН для такого класса решеток. Тем не менее, благодаря сочетанию упорядоченных и неупорядоченных геометрических свойств, оказалось, что фрактально-произвольные решетки обладают относительно низким уровнем боковых лепестков и в то же время являются устойчивыми. Тем самым такие решетки имеют рабочие характеристики, сочетающие характеристики периодических и произвольных решеток.
Чтобы преодолеть недостатки фрактально-произвольных решеток и одновременно сохранить многие из их желательных свойств, создан особый подкласс фрактально-произвольных решеток, названный ПФР. В предыдущей статье [14] мы разработали новый вид СИФ, способный производить полифрактальные структуры. Аналогично фрактально-произвольным, ПФР строятся из множества генераторов, 1,2,. М, каждый из которых имеет соответствующий оператор Хатчинсона W1,W2,., WM. Каждый оператор Хатчинсона Wm, в свою очередь, содержит Nmаффинных линейных преобразований ωm,1, ωm,2,., ωm,Nm. Такие преобразования ωm,nидентичны по форме Ур.1, включая три локальных параметра rm,n, φm,n, ψm,nи один глобальный масштабный параметр sf, который применяется по всей фрактальной структуре (нижний индекс mдобавляется для указания на конкретный генератор). Помимо трех локальных параметров здесь введен четвертый локальный κm,n, который связан с каждым аффинным линейным преобразованием. Этот параметр, называемый показателем связи, является целым значением в пределах от 1 до М, т.е. числа генераторов, используемых для построения ПФР, и применяется для предписания того, как используются аффинные линейные преобразования. Преобразование ωm,nможно выполнить только для тех ПФР ступени ℓ, где генератор, используемый на ступени ℓ, соответствует показателю связи κm,n. Такая процедура приводит к тому, что с каждым оператором Хатчинсона может быть связана только одна уникальная геометрия ПФР. Следовательно, набор ПФРFℓ ступени ℓ можно для удобства выразить в следующей записи (см. Ур.3), где первый нижний индекс определяет уровень ПФР, а второй - генератор, используемый на этом уровне. Отсюда, ПФР ступени ℓ+1, созданный генератором m, можно представить в виде Ур.4. Чтобы настраивать межэлементное пространство в конфигурации ПФР, мы используем еще один глобальный масштабный параметр sg. Наконец, отметим, что глобальный масштабный параметр sfможно вынести (факторизовать) из операторов Хатчинсона, что дает эффективную нормализованную процедуру построения СИФ для ПФР ступени L (см. Ур.5).