Допустим, задающее воздействие формируется из белого шума с спектральной плотностью Sз0 пропусканием его через интегрирующую цепь с постоянной времени Tx. Тогда дисперсия задающего воздействия
автоматический регулирование передача
.Для расчета дисперсии динамической ошибки нужно знать частотную характеристику ошибки Кош(jω):
.Дисперсия динамической ошибки:
.Вводя относительные величины α = 1/Txи β = T/Tx и учитывая выражение для дисперсии задающего воздействия, получаем:
. (12)Видим, что при К = 0 дисперсия динамической ошибки равна дисперсии задающего воздействия. Это объясняется тем, что при К = 0 выходной процесс y(t) = 0 и ошибка становится равной задающему воздействию. С увеличением коэффициента передачи К дисперсия уменьшается и стремится к постоянной величине, равной β. На первый взгляд может показаться, что получен результат, противоречащий здравому смыслу. Ведь с увеличением коэффициента передачи разомкнутой системы расширяется полоса пропускания замкнутой системы, значит, должны лучше отрабатываться высокочастотные составляющие задающего воздействия, и ошибка должна стремиться к нулю. Но никакого противоречия нет. Результат объясним, если учесть форму частотной характеристики ошибки. С увеличением К уменьшается запас устойчивости по фазе и, следовательно, увеличивается подъем АЧХ замкнутой системы в области верхних частот. А так как Кош(jω) = 1 – Кз(jω), то уменьшение спектральной плотности задающего воздействия компенсируется увеличением модуля частотной характеристики ошибки.
Дисперсия ошибки по возмущению при условии, что возмущающее воздействие является белым шумом со спектральной плотностью Sв0, равна:
.Дисперсия пропорциональна коэффициенту передачи разомкнутой системы и не зависит от постоянной времени Т. Это объясняется следующим образом. При малом К, когда К < 1/T, частота среза равна К и полоса пропускания замкнутой системы растет пропорционально К. Когда К > 1/T, частота среза увеличивается в меньшей степени, чем растет К, но из-за уменьшения запаса устойчивости по фазе в АЧХ замкнутой системы появляется подъем в области верхних частот. Это иллюстрируется частотными характеристиками, представленными на рис. 26. Площадь под |Кз(jω)|2 остается неизменной, а именно она определяет дисперсию ошибки по возмущению.
Дисперсия суммарной ошибки при некоррелированных задающем и возмущающем воздействиях σ2Σ = σ2дин + σ2воз. Зависимость дисперсий